This paper presents a joint state and parameter estimation method for aircraft engine performance degradation tracking. Contrast to previously reported techniques on state estimation that view parameters in the state evolution model as constants, the method presented in this paper treats parameters as time-varying variables to account for varying degradation rates at different stages of engine operation. Transition of degradation stages and estimation of parameters are performed by particle filtering (PF) under the Bayesian inference framework. To address the sample impoverishment problem due to discrete resampling, which is inherent to PF, a continuous resampling strategy has been proposed, with the goal to improve estimation accuracy of PF. The algorithm has shown to be able to detect abrupt fault inception based on the residuals between the estimated results from the state evolution model and actual measurements. The developed technique is evaluated using data generated from a turbofan engine model. Simulation of engine output parameters over a series of flights with both nominal degradation and abrupt fault types has been conducted, and error within 1% for performance tracking and degradation prediction has been shown. This demonstrates the effectiveness of the developed technique in fault detection and degradation tracking in aircraft engines.

References

1.
Simon
,
D. L.
, and
Garg
,
S.
,
2010
, “
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
031601
.
2.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2015
, “
Transient Gas Turbine Performance Diagnostics Through Nonlinear Adaptation of Compressor and Turbine Maps
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091201
.
3.
Volponi
,
A.
,
Brotherton
,
T.
, and
Luppold
,
R.
,
2008
, “
Empirical Tuning of an On-Board Gas Turbine Engine Model for Real-Time Module Performance Estimation
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021604
.
4.
Volponi
,
A. J.
,
2003
, “
Foundation of Gas Path Analysis
,”
Gas Turbine Condition Monitoring and Fault Diagnosis
,
K.
Mathioudakis
and
C. H.
Sieverding
, eds.,
von Karman Institute
,
Rhode-St-Genese
,
Belgium
, pp.
1
16
.
5.
Lipowsky
,
H.
,
Staudacher
,
S.
,
Bauer
,
M.
, and
Schmidt
,
K. J.
,
2010
, “
Application of Bayesian Forecasting to Change Detection and Prognosis of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
031602
.
6.
Volponi
,
A. J.
,
1998
, “
Gas Turbine Parameter Corrections
,”
ASME
Paper No. 98-GT-347.
7.
Sun
,
J.
,
Zuo
,
H.
,
Wang
,
W.
, and
Pecht
,
M. G.
,
2012
, “
Application of a State Space Modeling Technique to System Prognostics Based on a Health Index for Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
28
, pp.
585
596
.
8.
Peng
,
Y.
,
Dong
,
M.
, and
Zuo
,
M. J.
,
2010
, “
Current Status of Machine Prognostics in Condition-Based Maintenance: A Review
,”
Int. J. Adv. Manuf. Technol.
,
50
(
1
), pp.
297
313
.
9.
Huang
,
G. B.
,
Chen
,
L.
, and
Siew
,
C. K.
,
2006
, “
Universal Approximation Using Incremental Constructive Feedforward Networks With Random Hidden Nodes
,”
IEEE Trans. Neural Networks
,
17
(
4
), pp.
879
892
.
10.
Baraldi
,
P.
,
Mangili
,
F.
, and
Zio
,
E.
,
2013
, “
Investigation of Uncertainty Treatment Capability of Model-Based and Data-Driven Prognostic Methods Using Simulated Data
,”
Reliab. Eng. Syst. Saf.
,
112
, pp.
94
108
.
11.
Dewallef
,
P.
,
Romessis
,
C.
,
Léonard
,
O.
, and
Mathioudakis
,
K.
,
2006
, “
Combining Classification Techniques With Kalman Filters for Aircraft Engine Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
281
287
.
12.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
New Extension of Kalman Filter to Nonlinear Systems
,”
Proc. SPIE
,
3068
, p.
182
.
13.
Daroogheh
,
N.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2013
, “
Particle Filtering for State and Parameter Estimation in Gas Turbine Engine Fault Diagnostics
,”
American Control Conference
(
ACC
),
Washington, DC
, June 17–19, pp.
4343
4349
.
14.
Gordon
,
N. J.
,
Salmond
,
D. J.
, and
Smith
,
A. F. M.
,
1993
, “
Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation
,”
IEE Proc. F Radar Signal Process.
,
140
(
2
), pp.
107
113
.
15.
Doucet
,
A.
, and
Johansen
,
A.
,
2009
, “
A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later
,”
The Oxford Handbook of Nonlinear Filtering
,
D.
Crisan
and
B.
Rozovsky
, eds.,
Oxford University Press
,
Oxford, UK
, pp.
656
704
.
16.
Doucet
,
A.
,
Gordon
,
N. J.
, and
Krishnamurthy
,
V.
,
2001
, “
Particle Filters for State Estimation of Jump Markov Linear Systems
,”
IEEE Trans. Signal Process.
,
49
(
3
), pp.
613
624
.
17.
Cavarzere
,
A.
, and
Mauro
,
V.
,
2012
, “
Application of Forecasting Methodologies to Predict Gas Turbine Behavior Over Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012401
.
18.
Ozkan
,
E.
,
Lindsten
,
F.
,
Fritsche
,
C.
, and
Gustafsson
,
F.
,
2013
, “
Recursive Maximum Likelihood Identification of Jump Markov Nonlinear Systems
,”
IEEE Trans. Signal Process.
,
63
(
3
), pp.
754
765
.
19.
Wang
,
P.
, and
Gao
,
R.
,
2015
, “
Adaptive Resampling-Based Particle Filtering for Tool Life Prediction
,”
J. Manuf. Systems
,
37
, pp.
528
534
.
20.
Selesnick
,
I.
,
Arnold
,
S.
, and
Dantham
,
V. R.
,
2012
, “
Polynomial Smoothing of Time Series With Additive Step Discontinuities
,”
IEEE Trans. Signal Process.
,
60
(
12
), pp.
6305
6318
.
21.
Wang
,
J.
,
Wang
,
P.
, and
Gao
,
R.
,
2014
, “
Particle Filter for Tool Wear Prediction
,”
42nd North American Manufacturing Research Conference
,
Detroit, MI
, June 9–13, Paper No. 4521.
22.
Li
,
T.
,
Sun
,
S.
,
Sattar
,
T.
, and
Corchado
,
J.
,
2014
, “
Fight Sample Degeneracy and Impoverishment in Particle Filters: A Review of Intelligent Approaches
,”
Expert Syst. Appl.
,
41
(
8
), pp.
3944
3954
.
23.
Borguet
,
S.
,
Leonard
,
O.
, and
Dewallef
,
P.
,
2015
, “
Analysis Versus Synthesis for Trending of Gas-Path Measurement Time Series
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
022603
.
24.
Rudin
,
L. I.
,
Osher
,
S.
, and
Fatemi
,
E.
,
1992
, “
Nonlinear Total Variation Based Noise Removal Algorithms
,”
Phys. D
,
60
(
1
), pp.
259
268
.
25.
Boyd
,
S.
,
Parikh
,
N.
,
Chu
,
E.
,
Peleato
,
B.
, and
Eckstein
,
J.
,
2011
, “
Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers
,”
Found. Trends Mach. Learn.
,
3
(
1
), pp.
1
122
.
26.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-To-Failure Simulation
,”
International Conference on Prognostics and Health Management
,
Denver, CO
, Oct. 6–9.
27.
Oza
,
N.
,
2010
, “
C-MAPSS Aircraft Engine Simulator Data
,” NASA Ames Research Center, Moffett Field, CA, https://c3.nasa.gov/dashlink/resources/140/
You do not currently have access to this content.