Abstract

The helical-labyrinth seal (HLS) can reduce rub between labyrinth teeth and rotor during the rotor vibration because the helical teeth on the stator and steps (or teeth) on the rotor are staggered in some positions. The helical-labyrinth seal with the bristle pack named as the helical-labyrinth-brush seal (HLBS) has excellent sealing performance, but the study on the leakage flow characteristics of the HLBS is not available. This paper, using computational fluid dynamic (CFD) analysis technology based on a porous medium model, investigates the leakage flow characteristics of two types of HLBSs (bristle pack installed upstream or downstream of helical-labyrinth tooth named as HLBS-U and HLBS-D, respectively) at various pressure ratios (1–1.3) and rotational speeds (0–10,000 r/min, surface speeds range from 0 to 209 m/s). The radial clearance cb between the rotor and the bristle pack ranges from 0 mm to 1.0 mm, and the radial clearance ct between the labyrinth teeth and the steps on the rotor is 1.6 mm. In parallel, the leakage flow characteristics of the HLBS-D with the constant cb of 1.0 mm are experimentally measured at the pressure ratio up to 1.3 and rotational speed up to 2000 r/min (surface speed 42 m/s). The CFD-derived leakage flow rate (represented as effective clearance) and static cavity pressure agree well with the experimental data in the whole range of test conditions. The shaft rotation eliminates the leakage hysteresis effect of the HLBS-D. Compared with the HLBS-D, the effective clearance of HLBS-U is less sensitive to rotational speed changes. The effective clearance of the HLBS-U is smaller than that of the HLBS-D in the case of cb = 0.5 mm and rotational speed n <10,000 r/min, and the case of cb= 1.0 mm. However, for the case of cb= 0.5 mm and n =10,000 r/min, and the case of cb ≤ 0.1 mm, the situation is opposite. The brush seal sections of the HLBS-U and the HLBS-D offer over 55% and 65% total static pressure drop in the case of cb = 1.0 mm, respectively. The brush seal sections of two HLBSs bear almost the same static pressure drop of the over 97% total static pressure drop as cb equals to 0.1 mm. What is more, the HLBS-U has lower turbulent kinetic energy upstream of the bristle pack than the HLBS-D does, which means that the intensity of the bristles flutter of the HLBS-U is lower.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
2.
Ghasripoor
,
F.
,
Turnquist
,
N. A.
,
Kowalczyk
,
M.
, and
Couture
,
B.
,
2004
, “
Wear Prediction of Strip Seals Through Conductance
,”
ASME
Paper No. GT2004-53297.10.1115/GT2004-53297
3.
Neef
,
M.
,
Sulda
,
E.
,
Suerken
,
N.
, and
Walkenhorst
,
J.
,
2006
, “
Design Features and Performance Details of Brush Seals for Turbine Applications
,”
ASME
Paper No. GT2006-90404.10.1115/GT2006-90404
4.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Bahar
,
A. S.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
32503
.10.1115/1.4031369
5.
Chen
,
Y.
,
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2020
, “
Effects of Tooth Bending Damage on the Leakage Performance and Rotordynamic Coefficients of Labyrinth Seals
,”
Chin. J. Aeronaut.
,
33
(
4
), pp.
1206
1217
.10.1016/j.cja.2019.12.004
6.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Gezer
,
K.
,
Kocagül
,
M.
,
Arican
,
E.
, and
Ozmusul
,
M. S.
,
2017
, “
Labyrinth Seal Leakage Degradation Due to Various Types of Wear
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062504
.10.1115/1.4035658
7.
San Andrés
,
L.
,
Baker
,
J.
, and
Delgado
,
A.
,
2010
, “
Rotordynamic Force Coefficients of a Hybrid Brush Seal: Measurements and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042503
.10.1115/1.3159377
8.
Gaszner
,
M.
,
Pugachev
,
A. O.
,
Georgakis
,
C.
, and
Cooper
,
P.
,
2013
, “
Leakage and Rotordynamic Coefficients of Brush Seals With Zero Cold Clearance Used in an Arrangement With Labyrinth Fins
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
122506
.10.1115/1.4025236
9.
Li
,
Z.
,
Li
,
J.
,
Yan
,
X.
, and
Feng
,
Z.
,
2011
, “
Effects of Pressure Ratio and Rotational Speed on Leakage Flow and Cavity Pressure in the Staggered Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
114503
.10.1115/1.4003788
10.
San Andrés
,
L.
,
Wu
,
T.
,
Barajas-Rivera
,
J.
,
Zhang
,
J.
, and
Kawashita
,
R.
,
2019
, “
Leakage and Cavity Pressures in an Interlocking Labyrinth Gas Seal: Measurements Versus Predictions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101007
.10.1115/1.4044284
11.
Ferguson
,
J. G.
,
1988
, “
Brushes as High Performance Gas Turbine Seals
,”
ASME
Paper No. 88-GT-182.10.1115/88-GT-182
12.
Carlile
,
J. A.
,
Hendricks
,
R. C.
, and
Yoder
,
D. A.
,
1993
, “
Brush Seal Leakage Performance With Gaseous Working Fluids at Static and Low Rotor Speed Conditions
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
397
403
.10.1115/1.2906722
13.
Schwarz
,
H.
,
Friedrichs
,
J.
, and
Flegler
,
J.
,
2014
, “
Axial Inclination of the Bristles Pack, a New Design Parameter of Brush Seals for Improved Operational Behavior in Steam Turbines
,”
ASME
Paper No. GT2014-26330.10.1115/GT2014-26330
14.
Pekris
,
M. J.
,
Franceschini
,
G.
, and
Gillespie
,
D. R. H.
,
2014
, “
An Investigation of Flow, Mechanical, and Thermal Performance of Conventional and Pressure-Balanced Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062502
.10.1115/1.4026243
15.
Schur
,
F.
,
Friedrichs
,
J.
,
Flegler
,
J.
,
Georgakis
,
C.
, and
Polklas
,
T.
,
2018
, “
Pressure Distributions Below Brush Seals at Varying Operating Conditions
,”
ASME
Paper No. GT2018-76194.10.1115/GT2018-76194
16.
Hildebrandt
,
M.
,
Schwitzke
,
C.
, and
Bauer
,
H.
,
2019
, “
Experimental Investigation on the Influence of Geometrical Parameters on the Frictional Heat Input and Leakage Performance of Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
042504
.10.1115/1.4038767
17.
Hendricks
,
R. C.
,
Schlumberger
,
S.
,
Braun
,
M. J.
,
Choy
,
F.
, and
Mullen
,
R. L.
,
1991
, “
A Bulk Flow Model of a Brush Seal System
,”
ASME
Paper No. 91-GT-325.10.1115/91-GT-325
18.
Chupp
,
R. E.
, and
Holle
,
G. F.
,
1996
, “
Generalizing Circular Brush Seal Leakage Through a Randomly Distributed Bristle Bed
,”
ASME J. Turbomach.
,
118
(
1
), pp.
153
161
.10.1115/1.2836596
19.
Mullen
,
R.
,
Braun
,
M.
, and
Hendricks
,
R.
,
1990
, “
Numerical Modeling of Flows in Simulated Brush Seal Configurations
,”
AIAA
Paper No. AIAA-90-2141.10.2514/6.AIAA-90-2141
20.
Kang
,
Y.
,
Liu
,
M.
,
Kao-Walter
,
S.
,
Reheman
,
W.
, and
Liu
,
J.
,
2018
, “
Predicting Aerodynamic Resistance of Brush Seals Using Computational Fluid Dynamics and a 2-D Tube Banks Model
,”
Tribol. Int.
,
126
(
2018
), pp.
9
15
.10.1016/j.triboint.2018.04.023
21.
Sun
,
D.
,
Liu
,
N.
,
Fei
,
C.
,
Hu
,
G.
,
Ai
,
Y.
, and
Choy
,
Y.
,
2016
, “
Theoretical and Numerical Investigation on the Leakage Characteristics of Brush Seals Based on Fluid-Structure Interaction
,”
Aerosp. Sci. Technol.
,
58
(
2016
), pp.
207
216
.10.1016/j.ast.2016.08.023
22.
Liu
,
Y.
,
Chew
,
J. W.
,
Pekris
,
M. J.
, and
Kong
,
X.
,
2019
, “
The Effect of Inlet Swirl on Brush Seal Bristle Deflections and Stability
,”
ASME
Paper No. GT2019-90137.10.1115/GT2019-90137
23.
Braun
,
M. J.
,
Canacci
,
V. A.
, and
Hendricks
,
R. C.
,
1991
, “
Flow Visualization and Quantitative Velocity and Pressure Measurements in Simulated Single and Double Brush Seals
,”
Tribol. Trans.
,
34
(
1
), pp.
70
80
.10.1080/10402009108982011
24.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—Part I: Front Plate Configurations
,”
ASME J. Turbomach.
,
128
(
2
), pp.
367
378
.10.1115/1.2101857
25.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—Part II: Backing Plate Configurations
,”
ASME J. Turbomach.
,
128
(
2
), pp.
379
389
.10.1115/1.2101858
26.
Dogu
,
Y.
,
Aksit
,
M. F.
,
Demiroglu
,
M.
, and
Dinc
,
O. S.
,
2008
, “
Evaluation of Flow Behavior for Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), pp.
82
93
.10.1115/1.2770479
27.
Dogu
,
Y.
,
Bahar
,
A. S.
,
Sertçakan
,
M. C.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Brush Seal Leakage Performance Depending on Geometric Dimensions and Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
32506
.10.1115/1.4031370
28.
Laos
,
H. E.
,
Vance
,
J. M.
, and
Buchanan
,
S. E.
,
2000
, “
Hybrid Brush Pocket Damper Seals for Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
330
336
.10.1115/1.483211
29.
Li
,
J.
,
Qiu
,
B.
, and
Feng
,
Z.
,
2012
, “
Experimental and Numerical Investigations on the Leakage Flow Characteristics of the Labyrinth Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102509
.10.1115/1.4007062
30.
Qiu
,
B.
,
Li
,
J.
, and
Yan
,
X.
,
2014
, “
Investigation Into the Flow Behavior of Multi-Stage Brush Seals
,”
Proc. Inst. Mech. Eng. Part A
,
228
(
4
), pp.
416
428
.10.1177/0957650914522456
31.
Pugachev
,
A. O.
, and
Deckner
,
M.
,
2010
, “
CFD Prediction and Test Results of Stiffness and Damping Coefficients for Brush-Labyrinth Gas Seals
,”
ASME
Paper No. GT2010-22667.10.1115/GT2010-22667
32.
Kirk
,
T.
,
Bowshe
,
A.
,
Crudgington
,
P.
, and
Chupp
,
R.
,
2015
, “
Aspects of Brush Seal Design
,”
AIAA
Paper No. 2015-4230.10.2514/6.2015-4230
33.
Ma
,
D.
,
Li
,
J.
,
Zhang
,
Y.
,
Li
,
Z.
,
Yan
,
X.
, and
Son
,
L.
,
2019
, “
Application of Blade Tip Shroud Brush Seal to Improve the Aerodynamic Performance of Turbine Stage
,”
Proc. IMechE Part A
, 234(6), pp.
777
794
.10.1177/0957650919883153
34.
Zhang
,
Y.
,
Li
,
J.
,
Yan
,
X.
, and
Li
,
Z.
,
2018
, “
Experimental and Numerical Investigations on Leakage Flow Characteristics of Two Kinds of Brush Seals
,”
ASME
Paper No. GT2018-76235.10.1115/GT2018-76235
35.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.http://dns2.asia.edu.tw/~ysho/YSHO-English/1000%20CE/PDF/Che%20Eng%20Pro48,%2089.pdf
36.
Chew
,
J. W.
, and
Hogg
,
S. I.
,
1997
, “
Porosity Modeling of Brush Seals
,”
ASME J. Tribol.
,
119
(
4
), pp.
769
775
.10.1115/1.2833883
You do not currently have access to this content.