Abstract

In this study, a model flame of quasi-one-dimensional (1D) counterflow spray flame has been developed. The two-dimensional (2D) multiphase convection-diffusion-reaction equations have been simplified to one dimension using similarity reduction under the Eulerian framework. This model flame is able to directly account for nonadiabatic heat loss, preferential evaporation, as well as multiple combustion regimes present in realistic spray combustion processes. A spray flamelet library was generated based on the model flame. To retrieve data from the spray flamelet library, the enthalpy was used as an additional controlling variable to represent the interphase heat transfer, while the mixing and chemical reaction processes were mapped to the mixture fraction and the progress variable. The spray flamelet generated manifolds (SFGM) approach was validated against the results from the direct integration of finite rate chemistry as a benchmark. The SFGM approach was found to give a better performance in terms of predictions of temperature and species mass fractions.

References

1.
Peters
,
N.
,
1988
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1231
1250
.10.1016/S0082-0784(88)80355-2
2.
Franzelli
,
B.
,
Fiorina
,
B.
, and
Darabiha
,
N.
,
2013
, “
A Tabulated Chemistry Method for Spray Combustion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1659
1666
.10.1016/j.proci.2012.06.013
3.
Knudsen
,
E.
,
Shashank
., and
Pitsch
,
H.
,
2015
, “
Modeling Partially Premixed Combustion Behavior in Multiphase LES
,”
Combust. Flame
,
162
(
1
), pp.
159
180
.10.1016/j.combustflame.2014.07.013
4.
Hu
,
Y.
, and
Kurose
,
R.
,
2019
, “
Partially Premixed Flamelet in LES of Acetone Spray Flames
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3327
3334
.10.1016/j.proci.2018.06.020
5.
Watanabe
,
H.
,
Kurose
,
R.
,
Hwang
,
S.
, and
Akamatsu
,
F.
,
2007
, “
Characteristics of Flamelets in Spray Flames Formed in a Laminar Counterflow
,”
Combust. Flame
,
148
(
4
), pp.
234
248
.10.1016/j.combustflame.2006.09.006
6.
Baba
,
Y.
, and
Kurose
,
R.
,
2008
, “
Analysis and Flamelet Modeling for Spray Combustion
,”
J. Fluid Mech.
,
612
, pp.
45
79
.10.1017/S0022112008002620
7.
Luo
,
Y.
,
Wen
,
X.
,
Wang
,
H.
,
Luo
,
K.
, and
Fan
,
J.
,
2018
, “
Evaluation of Different Flamelet Tabulation Methods for Laminar Spray Combustion
,”
Phys. Fluids
,
30
(
5
), p.
053603
.10.1063/1.5026739
8.
Zhang
,
Y.
,
Wang
,
H.
,
Both
,
A.
,
Ma
,
L.
, and
Yao
,
M.
,
2019
, “
Effects of Turbulence-Chemistry Interactions on Auto-Ignition and Flame Structure for n-Dodecane Spray Combustion
,”
Combust. Theory Modell.
,
23
(
5
), pp.
907
934
.10.1080/13647830.2019.1600722
9.
Hollmann
,
C.
, and
Gutheil
,
E.
,
1998
, “
Diffusion Flames Based on a Laminar Spray Flame Library
,”
Combust. Sci. Technol.
,
135
(
1–6
), pp.
175
192
.10.1080/00102209808924156
10.
Hu
,
Y.
,
Olguin
,
H.
, and
Gutheil
,
E.
,
2017
, “
A Spray Flamelet/Progress Variable Approach Combined With a Transported Joint PDF Model for Turbulent Spray Flames
,”
Combust. Theory Modell.
,
21
(
3
), pp.
575
602
.10.1080/13647830.2016.1277589
11.
Franzelli
,
B.
,
Vié
,
A.
, and
Ihme
,
M.
,
2015
, “
On the Generalization of the Mixture Fraction to a Monotonic Mixing-Describing Variable for the Flamelet Formulation of Spray Flames
,”
Combust. Theory Modell.
,
19
(
6
), pp.
773
806
.10.1080/13647830.2015.1099740
12.
Yi
,
R.
,
Zhang
,
X.
,
Yang
,
T.
, and
Chen
,
C. P.
,
2019
, “
Spray Flamelet Modeling of Kerosene Spray Combustion
,”
AIAA
Paper 2019-3867.10.2514/6.2019-3867
13.
Kee
,
R. J.
,
Coltrin
,
M. E.
,
Glarborg
,
P.
, and
Zhu
,
H.
,
2017
,
Chemically Reacting Flow: Theory and Practice
,
Wiley
,
Hoboken, NJ
.
14.
Adeniji-Fashola
,
A. A.
, and
Chen
,
C. P.
,
1990
, “
Modeling of Confined Turbulent Fluid-Particle Flows Using Eulerian and Lagrangian Schemes
,”
Int. J. Heat Mass Transfer
,
33
(
4
), pp.
691
702
.10.1016/0017-9310(90)90168-T
15.
Thomas
,
L. H.
,
1949
, “
Elliptic Problems in Linear Differential Equations Over a Network
,” Watson Science Computer Laboratory Report, Columbia University, New York.
16.
Chase
,
M. W.
,
1998
,
NIST-JANAF Thermochemical Tables
,
American Institute of Physics
,
Gaithersburg, MD
.
17.
Millán-Merino
,
A.
,
Fernández-Tarrazo
,
E.
,
Sánchez-Sanz
,
M.
, and
Williams
,
F. A.
,
2018
, “
A Multipurpose Reduced Mechanism for Ethanol Combustion
,”
Combust. Flame
,
193
, pp.
112
122
.10.1016/j.combustflame.2018.03.005
18.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
19.
Chen
,
X.
,
Khani
,
E.
, and
Chen
,
C. P.
,
2016
, “
A Unified Jet Fuel Surrogate for Droplet Evaporation and Ignition
,”
Fuel
,
182
, pp.
284
291
.10.1016/j.fuel.2016.05.114
20.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinetics
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
21.
Stagni
,
A.
,
Esclapez
,
L.
,
Govindaraju
,
P.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ihme
,
M.
,
2017
, “
The Role of Preferential Evaporation on the Ignition of Multicomponent Fuels in a Homogeneous Spray/Air Mixture
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2483
2491
.10.1016/j.proci.2016.06.052
22.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
23.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
You do not currently have access to this content.