Abstract

The interturbine burner (ITB) engine, which is introduced between high and low pressure turbines (LPTs), is a relatively new concept for increasing specific thrust and lowering high altitude specific fuel consumption (SFC) than engine with afterburner (AB). Although ITB engines have outstanding performance improvements, they also present a challenge to the design of control laws for ITB engines under unknown matching mechanisms and multiple constraints. This study proposes a self-scheduling control law design method for ITB engine mode transition that considers ITB ignition and flameout characteristics, as well as cooling air volume. This method derives the control law based on the global optimal algorithm and shapley additive explanation (SHAP)-value analysis method, which avoids manual analysis and reduces the number of adjustment of variable geometric components. An ITB transient model is established to verify the control laws under the transition of ignition and flameout modes. During the mode transition process of opening and closing the ITB, the flow fluctuation of the precritical point and rear-critical point does not exceed 2%, and the comprehensive thrust fluctuation index composed of three typical state points does not exceed 5%. Through simulation analysis with constrained constraints, at most one variable geometry component is adjusted.

References

1.
Jing
,
L. I. U.
, and
Zhi-Qiang
,
L. I. U.
,
2016
, “
Conceptual Design and Research of Supersonic Target Drone
,”
J. Astronaut. Metrol. Meas.
,
36
(
4
), p.
60
.
2.
Wittmer
,
A.
, and
Müller
,
A.
,
2021
, “
New Frontiers in Aviation: Supersonic, Space Travel and Drones
,”
Aviation Systems
,
Springer
,
Cham
, Switzerland, pp.
447
473
.
3.
Zhou
,
D.
,
Yao
,
Q.
,
Wu
,
H.
,
Ma
,
S.
, and
Zhang
,
H.
,
2020
, “
Fault Diagnosis of Gas Turbine Based on Partly Interpretable Convolutional Neural Networks
,”
Energy
,
200
, p.
117467
.10.1016/j.energy.2020.117467
4.
Badum
,
L.
,
Leizeronok
,
B.
, and
Cukurel
,
B.
,
2021
, “
New Insights From Conceptual Design of an Additive Manufactured 300 W Microgas Turbine Toward Unmanned Aerial Vehicle Applications
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021006
.10.1115/1.4048695
5.
Zhou
,
D.
,
Wei
,
T.
,
Huang
,
D.
,
Li
,
Y.
, and
Zhang
,
H.
,
2020
, “
A Gas Path Fault Diagnostic Model of Gas Turbines Based on Changes of Blade Profiles
,”
Eng. Failure Anal.
,
109
, p.
104377
.10.1016/j.engfailanal.2020.104377
6.
Pellegrini
,
A.
,
Nikolaidis
,
T.
,
Pachidis
,
V.
, and
Köhler
,
S.
,
2017
, “
On the Performance Simulation of Inter-Stage Turbine Reheat
,”
Appl. Therm. Eng.
,
113
, pp.
544
553
.10.1016/j.applthermaleng.2016.10.034
7.
Zhou
,
D.
,
Wei
,
T.
,
Zhang
,
H.
,
Ma
,
S.
, and
Weng
,
S.
,
2017
, “
A Damage Evaluation Model of Turbine Blade for Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
092602
.10.1115/1.4036060
8.
Blunck
,
D. L.
,
Shouse
,
D. T.
,
Neuroth
,
C.
,
Lynch
,
A.
,
Erdmann
,
T. J.
, Jr.
,
Burrus
,
D. L.
,
Zelina
,
J.
,
Richardson
,
D.
, and
Caswell
,
A.
,
2014
, “
Experimental Studies of Cavity and Core Flow Interactions With Application to Ultra-Compact Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091505
.10.1115/1.4026975
9.
Ramohalli
,
K.
,
1987
, “
Isothermal Combustion for Improved Efficiencies
,”
23rd Joint Propulsion Conference
, San Diego, CA, June 29–July 2, p. 1999.https://ui.adsabs.harvard.edu/abs/1987jpsd.confQ....R/abstract
10.
Liu
,
F.
, and
Sirignano
,
W. A.
,
2001
, “
Turbojet and Turbofan Engine Performance Increases Through Turbine Burners
,”
J. Propul. Power
,
17
(
3
), pp.
695
705
.10.2514/2.5797
11.
Yang
,
Y.
,
Wang
,
Z.
,
Sun
,
M.
,
Wang
,
H.
, and
Li
,
L.
,
2015
, “
Numerical and Experimental Study on Flame Structure Characteristics in a Supersonic Combustor With Dual-Cavity
,”
Acta Astronaut.
,
117
, pp.
376
389
.10.1016/j.actaastro.2015.09.005
12.
Sekar
,
B.
,
Thornburg
,
H.
,
Briones
,
A.
, and
Zelina
,
J.
,
2009
, “
Effect of Trapped Vortex Combustion With Radial Vane Cavity Arrangements on Predicted Inter-Turbine Burner Performance
,”
AIAA
Paper No. 2009-4603.10.2514/6.2009-4603
13.
Jia
,
X.
,
Zhou
,
D.
,
Huang
,
D.
,
Xiao
,
W.
,
Xu
,
L.
, and
Hao
,
J.
,
2021
, “
Parametric Analysis of Variable Stator Vane System in Gas Turbines Based on Cosimulation of Its Refined Model and System Dynamic Performance Model
,”
Adv. Theory Simul.
,
4
(
12
), p.
2100286
.10.1002/adts.202100286
14.
Erdmenger
,
R. R.
,
Menter
,
K.
,
Giepman
,
R.
,
Clancy
,
C.
,
Vadvadgi
,
A.
,
Lavertu
,
T.
,
Leonard
,
T.
, and
Spence
,
S.
,
2019
, “
Development of a New Low-Cost Tandem Variable Geometry Turbocharging Concept for Turbocharger Applications
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031006
.10.1115/1.4041279
15.
Lyu
,
Y.
,
Tang
,
H.
, and
Chen
,
M.
,
2016
, “
A Study on Combined Variable Geometries Regulation of Adaptive Cycle Engine During Throttling
,”
Appl. Sci.
,
6
(
12
), p.
374
.10.3390/app6120374
16.
Zheng
,
J.
,
Chang
,
J.
,
Ma
,
J.
, and
Yu
,
D.
,
2020
, “
Analysis of Aerodynamic/Propulsive Couplings During Mode Transition of Over-Under Turbine-Based-Combined-Cycle Engines
,”
Aerosp. Sci. Technol.
,
99
, p.
105773
.10.1016/j.ast.2020.105773
17.
Zhou
,
W.
,
Huang
,
J.
, and
Lu
,
F.
,
2015
, “
Control Strategy for Turbo-Shaft Engine With Inter-Stage Turbine Burner
,” 12th International Bhurban Conference on Applied Sciences and Technology (
IBCAST
), Islamabad, Pakistan, Jan. 13–17, pp.
115
120
.10.1109/IBCAST.2015.7058490
18.
Nie
,
L.
,
Mu
,
C.
,
Yin
,
Z.
, and
Jiang
,
W.
,
2020
, “
Control Law Design of Variable Cycle Engine Based on DQN
,”
Third International Conference on Unmanned Systems (ICUS)
, Harbin, China, Nov. 27–28,
pp.
937
941
.
19.
Grönstedt
,
U. T. J.
, and
Pilidis
,
P.
,
2002
, “
Control Optimization of the Transient Performance of the Selective Bleed Variable Cycle Engine During Mode Transition
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
75
81
.10.1115/1.1394965
20.
Mantelli
,
L.
,
Ferrari
,
M. L.
, and
Traverso
,
A.
,
2021
, “
Surge Prevention Techniques for a Turbocharged Solid Oxide Fuel Cell Hybrid System
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121019
.10.1115/1.4052092
21.
Zhang
,
J.
,
Dong
,
P.
,
Tang
,
H.
,
Zheng
,
J.
,
Wang
,
J.
, and
Chen
,
M.
,
2021
, “
General Design Method of Control Law for Adaptive Cycle Engine Mode Transition
,”
AIAA J.
, 60(1), pp.
1
15
. 10.2514/1.J060674
22.
Rivera
,
J. E.
,
Gordon
,
R. L.
,
Talei
,
M.
, and
Bourque
,
G.
,
2021
, “
Optimization of CO Turndown for an Axially Staged Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071005
.10.1115/1.4049910
23.
Liu
,
H.
,
Qian
,
W.
,
Zhu
,
M.
, and
Li
,
S.
,
2020
, “
Kinetics Modeling on NOx Emissions of a Syngas Turbine Combustor Using Rich-Burn, Quick-Mix, Lean-Burn Combustion Method
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021005
.10.1115/1.4045585
24.
Chen
,
H.
,
Zhang
,
H.
,
Xi
,
Z.
, and
Zheng
,
Q.
,
2019
, “
Modeling of the Turbofan With an Ejector Nozzle Based on Infrared Prediction
,”
Appl. Therm. Eng.
,
159
, p.
113910
.10.1016/j.applthermaleng.2019.113910
25.
Liew
,
K. H.
,
2006
, “
Aerothermodynamic Cycle Analysis of a Dual-Spool, Separate-Exhaust Turbofan Engine With an Interstage Turbine Burner
,” Ph.D. thesis,
Michigan Technological University
, Houghton, MI.
26.
Yin
,
F.
, and
Rao
,
A. G.
,
2017
, “
Off-Design Performance of an Interstage Turbine Burner Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082603
.10.1115/1.4035821
27.
Zhou
,
D.
,
Jia
,
X.
,
Hao
,
J.
,
Wang
,
D.
,
Huang
,
D.
, and
Wei
,
T.
,
2021
, “
Study on Intelligent Control of Gas Turbines for Extending Service Life Based on Reinforcement Learning
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061001
.10.1115/1.4048796
28.
Huang
,
D.
,
Zhou
,
D.
,
Jia
,
X.
,
Hao
,
J.
, and
Fang
,
Q.
,
2022
, “
Gas Path Deterioration Assessment for Turbofan Engines Based on Stochastic Dynamics Responses in the Thermodynamic Cycle
,”
Mech. Syst. Signal Process.
,
178
(
1
), p.
109314
.10.1016/j.ymssp.2022.109314
29.
Zhou
,
D.
,
Hao
,
J.
,
Huang
,
D.
,
Huang
,
D.
,
Jia
,
X.
, and
Zhang
,
H.
,
2020
, “
Dynamic Simulation of Gas Turbines Via Feature Similarity-Based Transfer Learning
,”
Front. Energy
,
14
(
4
), pp.
817
835
.10.1007/s11708-020-0709-9
30.
Kurzke
,
J.
,
1995
, “
Advanced User-Friendly Gas Turbine Performance Calculations on a Personal Computer
,”
ASME
Paper No. 95-GT-147.10.1115/95-GT-147
31.
Liu
,
F.
,
Zhang
,
K.
,
Mu
,
Y.
,
Liu
,
C.
,
Yang
,
J.
,
Xu
,
G.
, and
Zhu
,
J.
,
2014
, “
Experimental Investigation on Ignition and Lean Blow-Out Performance of a Multi-Sector Centrally Staged Combustor
,”
J. Therm. Sci.
,
23
(
5
), pp.
480
485
.10.1007/s11630-014-0732-4
32.
Katta
,
V. R.
, and
Roquemore
,
W. M.
,
1998
, “
Study on Trapped-Vortex Combustor-Effect of Injection on Flow Dynamics
,”
J. Propul. Power
,
14
(
3
), pp.
273
281
.10.2514/2.5286
33.
Probst
,
D. M.
,
Raju
,
M.
,
Senecal
,
P. K.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Som
,
S.
,
Moiz
,
A. A.
, and
Pei
,
Y.
,
2019
, “
Evaluating Optimization Strategies for Engine Simulations Using Machine Learning Emulators
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091011
.10.1115/1.4043964
34.
Huang
,
D.
,
Zhou
,
D.
,
Hao
,
J.
,
Jia
,
X.
,
Huang
,
D.
,
Zhang
,
C.
,
Li
,
T.
,
Yan
,
S.
, and
Wang
,
C.
,
2021
, “
A Discrete Optimal Control Model for the Distributed Energy System Considering Multiple Disturbance Inputs
,”
IET Gener., Transm. Distrib.
,
15
(
17
), pp.
2513
2526
.10.1049/gtd2.12195
35.
Littlechild
,
S. C.
, and
Owen
,
G.
,
1973
, “
A Simple Expression for the Shapley Value in a Special Case
,”
Manage. Sci.
,
20
(
3
), pp.
370
372
.10.1287/mnsc.20.3.370
36.
Wang
,
J.
,
He
,
X.
,
Wang
,
B.
, and
Zheng
,
X.
,
2022
, “
Shapley Additive Explanations of Multigeometrical Variable Coupling Effect in Transonic Compressor
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041015
.10.1115/1.4053322
You do not currently have access to this content.