Abstract

Intentional frequency mistuning referred to as detuning is known to be an effective mean to prevent aeroelastic flutter in gas turbines. The Coriolis effect, which is usually discarded, can reduce the mistuning effects and therefore compromise the stabilizing effect of detuning with respect to flutter. This paper presents an original study of the influence of the Coriolis effect on the aeroelastic stability of a single-piece bladed disk (blisk), which made it possible to highlight for the first time the complex interactions between flutter, mistuning, and the Coriolis effect. The blisk is modeled with a lumped parameter model and the aeroelastic self-excitations using Whitehead's theory. A genetic algorithm is used to determine the best detuning pattern to stabilize the flutter-prone blisk. The results show that if the detuning pattern is identified without taking the Coriolis effect into account, the detuned blisk can still be prone to flutter. The key driver of this loss of stability is the frequency separation of the modes resulting from the Coriolis effect, which decreases the mode interactions that are required to stabilize the system. This article demonstrates the need to consider the Coriolis effect when studying the aeroelastic stability of cyclic structures with flexible disk and blade-disk coupling. By doing so, it is shown that a higher level of detuning is needed to compensate the adverse effects of Coriolis and ensure stability to flutter.

References

1.
Theodorsen
,
T.
, and
Mutchler
,
W. H.
,
1934
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” NACA, Boston, MA, Report No. TR-496.
2.
Garrick
,
I. E.
, and
Reed
,
W. H.
,
1981
, “
Historical Development of Aircraft Flutter
,”
J. Aircr.
,
18
(
11
), pp.
897
912
.10.2514/3.57579
3.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.10.2514/8.3502
4.
Whitehead
,
D. S.
,
1960
, “
Force and Moment Coefficients for Vibrating Aerofoils in Cascade
,” Aeronautical Research Council Reports and Memoranda, No. 3254,
London, UK
.
5.
Kazvaa
,
K. R. V.
, and
Kielb
,
R. E.
,
1982
, “
Flutter and Response of a Mistuned Cascade in Incompressible Flow
,”
AIAA J.
,
20
(
8
), pp.
1120
1127
.10.2514/3.51172
6.
Bendiksen
,
O. O.
,
1984
, “
Flutter of Mistuned Turbomachinery Rotors
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
25
33
.10.1115/1.3239546
7.
Crawley
,
E. F.
, and
Hall
,
K. C.
,
1985
, “
Optimization and Mechanisms of Mistuning in Cascades
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
418
426
.10.1115/1.3239742
8.
Hoyniak
,
D.
, and
Fleeter
,
S.
,
1986
, “
The Effect of Circumferential Aerodynamic Detuning on Coupled Bending-Torsion Unstalled Supersonic Flutter
,”
ASME J. Turbomach.
,
108
(
2
), pp.
253
260
.10.1115/1.3262045
9.
Sawyer
,
S.
, and
Fleeter
,
S.
,
1995
, “
Flutter Stability of a Detuned Cascade in Subsonic Compressible Flow
,”
J. Propul. Power
,
11
(
5
), pp.
923
930
.10.2514/3.23918
10.
Kielb
,
R. E.
,
Feiner
,
D. M.
,
Griffin
,
J. H.
, and
Miyakozawa
,
T.
,
2004
, “
Flutter of Mistuned Bladed Disks and Blisks With Aerodynamic and FMM Structural Coupling
,”
ASME
Paper No. GT2004-54315.10.1115/GT2004-54315
11.
Zhou
,
B.
,
Thouverez
,
F.
, and
Lenoir
,
D.
,
2014
, “
Vibration Reduction of Mistuned Bladed Disks by Passive Piezoelectric Shunt Damping Techniques
,”
AIAA J.
,
52
(
6
), pp.
1194
1206
.10.2514/1.J052202
12.
Biagiotti
,
S.
,
Pinelli
,
L.
,
Poli
,
F.
,
Vanti
,
F.
, and
Pacciani
,
R.
,
2018
, “
Numerical Study of Flutter Stabilization in Low Pressure Turbine Rotor With Intentional Mistuning
,”
Energy Procedia
,
148
, pp.
98
105
.10.1016/j.egypro.2018.08.035
13.
Corral
,
R.
,
Beloki
,
J.
,
Calza
,
P.
, and
Elliott
,
R.
,
2019
, “
Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig
,”
AIAA J.
,
57
(
2
), pp.
782
795
.10.2514/1.J056943
14.
Siewert
,
C.
,
Pütz
,
O.
, and
Eigemann
,
J.
,
2020
, “
Analysis of Intentional Mistuning on the Aeroelastic Stability of Freestanding Last Stage Blade Rows in Steam Turbines
,”
ASME
Paper No. GT2020-14656.10.1115/GT2020-14656
15.
Phan
,
H. M.
, and
He
,
L.
,
2021
, “
Investigation of Mistuned Oscillating Cascade Using Fully-Coupled Method
,”
ASME
Paper No. GT2021-59124.10.1115/GT2021-59124
16.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2002
, “
Using Intentional Mistuning in the Design of Turbomachinery Rotors
,”
AIAA J.
,
40
(
10
), pp.
2077
2086
.10.2514/2.1542
17.
Choi
,
B.-K.
,
Lentz
,
J.
,
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2003
, “
Optimization of Intentional Mistuning Patterns for the Reduction of the Forced Response Effects of Unintentional Mistuning: Formulation and Assessment
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
131
140
.10.1115/1.1498270
18.
Han
,
Y.
,
Murthy
,
R.
,
Mignolet
,
M. P.
, and
Lentz
,
J.
,
2014
, “
Optimization of Intentional Mistuning Patterns for the Mitigation of the Effects of Random Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062505
.10.1115/1.4026141
19.
Yuan
,
J.
,
Scarpa
,
F.
,
Allegri
,
G.
,
Titurus
,
B.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Efficient Computational Techniques for Mistuning Analysis of Bladed Discs: A Review
,”
Mech. Syst. Signal Process.
,
87
, pp.
71
90
.10.1016/j.ymssp.2016.09.041
20.
Quaegebeur
,
S.
,
Chouvion
,
B.
, and
Thouverez
,
F.
,
2021
, “
Impact of Mistuned Underplatform Dampers on the Nonlinear Vibration of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121023
.10.1115/1.4051868
21.
El-Bayoumy
,
L. E.
, and
Srinivasan
,
A. V.
,
1975
, “
Influence of Mistuning on Rotor-Blade Vibrations
,”
AIAA J.
,
13
(
4
), pp.
460
464
.10.2514/3.49731
22.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part I: Free Vibrations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
23.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part ii: Forced Vibrations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
439
449
.10.1115/1.3269548
24.
Nikolic
,
M.
,
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2007
, “
Coriolis Forces in Forced Response Analysis of Mistuned Bladed Disks
,”
ASME J. Turbomach.
,
129
(
4
), pp.
730
739
.10.1115/1.2720866
25.
Gibert
,
C.
,
Kharyton
,
V.
,
Thouverez
,
F.
, and
Jean
,
P.
,
2010
, “
On Forced Response of a Rotating Integrally Bladed Disk: Predictions and Experiments
,”
ASME
Paper No. GT2010-23610.10.1115/GT2010-23610
26.
Tang
,
Q.
,
Li
,
C.
,
She
,
H.
, and
Wen
,
B.
,
2021
, “
Analysis of Frequency and Mode Shape of Rotating-Flexible Disk-Drum Coupled Structure With Non-Continuous Connections
,”
Int. J. Mech. Sci.
,
190
, p.
106004
.10.1016/j.ijmecsci.2020.106004
27.
Almeida
,
P.
,
Gibert
,
C.
,
Leblanc
,
X.
,
Ousty
,
J.-P.
, and
Thouverez
,
F.
,
2012
, “
Experimental and Numerical Investigations on a Rotating Centrifugal Compressor
,”
ASME
Paper No. GT2012-69760.10.1115/GT2012-69760
28.
Ruffini
,
V.
,
Green
,
J. S.
, and
Schwingshackl
,
C. W.
,
2017
, “
The Influence of Mistuning and Coriolis Effects on the Modal Parameters of Bladed Discs: An Experimental Study
,”
ASME
Paper No. GT2017-63437.10.1115/GT2017-63437
29.
Tacher
,
A.
,
Thouverez
,
F.
, and
Armand
,
J.
,
2021
, “
Interaction Between Coriolis Forces and Mistuning on a Cyclic Symmetric Structure With Geometrical Nonlinearity
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051006
.10.1115/1.4048844
30.
Tacher
,
A.
,
Thouverez
,
F.
, and
Armand
,
J.
,
2022
, “
Modelling and Analysis of a Bladed Drum Subject to the Coriolis and Mistuning Effects
,”
Int. J. Mech. Sci.
,
218
, p.
106994
.10.1016/j.ijmecsci.2021.106994
31.
Whitehead
,
D. S.
,
1962
, “
Bending Flutter of Unstalled Cascade Blades at Finite Deflection
,” Aeronautical Research Council, London, UK, Reports and Memoranda 3386.
32.
Fleeter
,
S.
, and
Hoyniak
,
D.
,
1989
, “
Aeroelastic Detuning for Stability Enhancement of Unstalled Supersonic Flutter
,”
Int. J. Turbo Jet Engines
,
6
(
1
), pp.
17
26
.10.1515/TJJ.1989.6.1.17
33.
Sadeghi
,
M.
, and
Liu
,
F.
,
2001
, “
Computation of Mistuning Effects on Cascade Flutter
,”
AIAA J.
,
39
(
1
), pp.
22
28
.10.2514/2.1297
34.
Sadeghi
,
M.
, and
Liu
,
F.
,
2007
, “
Investigation of Mistuning Effects on Cascade Flutter Using a Coupled Method
,”
J. Propul. Power
,
23
(
2
), pp.
266
272
.10.2514/1.18876
35.
Salles
,
L.
, and
Vahdati
,
M.
,
2016
, “
Comparison of Two Numerical Algorithms for Computing the Effects of Mistuning of Fan Flutter
,”
ASME
Paper No. GT2016-57324.10.1115/GT2016-57324
36.
Corral
,
R.
,
Khemiri
,
O.
, and
Martel
,
C.
,
2018
, “
Design of Mistuning Patterns to Control the Vibration Amplitude of Unstable Rotor Blades
,”
Aerosp. Sci. Technol.
,
80
, pp.
20
28
.10.1016/j.ast.2018.06.034
37.
Martel
,
C.
, and
Rodríguez
,
S.
,
2020
, “
Mistuning Effects on the Nonlinear Friction Saturation of Flutter Vibration Amplitude
,”
ASME
Paper No. GT2020-15442.10.1115/GT2020-15442
38.
Rodríguez
,
S.
, and
Martel
,
C.
,
2021
, “
Analysis of Experimental Results of Turbomachinery Flutter Using an Asymptotic Reduced Order Model
,”
J. Sound Vib.
,
509
, p.
116225
.10.1016/j.jsv.2021.116225
39.
Whitehead
,
D. S.
,
1998
, “
The Maximum Factor by Which Forced Vibration of Blades Can Increase Due to Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
115
119
.10.1115/1.2818061
40.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
41.
Petrov
,
E. P.
,
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
2002
, “
A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
586
597
.10.1115/1.1451753
42.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks-Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
43.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
44.
Beirow
,
B.
,
Kühhorn
,
A.
,
Weber
,
R.
, and
Popig
,
F.
,
2021
, “
Vibration Analyses of an Axial Turbine Wheel With Intentional Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061027
.10.1115/1.4049449
45.
Berthelon
,
T.
,
Dugeai
,
A.
,
Langridge
,
J.
, and
Thouverez
,
F.
,
2019
, “
Analysis of Vortex Ingestion Impact on the Dynamic Response of the Fan in Resonance Condition
,”
ASME
Paper No. GT2019-90939.10.1115/GT2019-90939
46.
Zoghaib
,
L.
, and
Mattei
,
P.-O.
,
2014
, “
Time and Frequency Response of Structures With Frequency Dependent, Non-Proportional Linear Damping
,”
J. Sound Vib.
,
333
(
3
), pp.
887
900
.10.1016/j.jsv.2013.09.044
47.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J. M.
,
2008
, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,”
ASME J. Turbomach.
,
130
(
1
), p.
011006
.10.1115/1.2720503
48.
Figaschewsky
,
F.
,
Kühhorn
,
A.
,
Beirow
,
B.
,
Nipkau
,
J.
,
Giersch
,
T.
, and
Power
,
B.
,
2017
, “
Design and Analysis of an Intentional Mistuning Experiment Reducing Flutter Susceptibility and Minimizing Forced Response of a Jet Engine Fan
,”
ASME
Paper No. GT2017-64621.10.1115/GT2017-64621
49.
Laxalde
,
D.
,
Thouverez
,
F.
,
Sinou
,
J.-J.
,
Lombard
,
J.-P.
, and
Baumhauer
,
S.
,
2007
, “
Mistuning Identification and Model Updating of an Industrial Blisk
,”
Int. J. Rotating Mach.
,
2007
, pp.
1
10
.10.1155/2007/17289
50.
Campobasso
,
M. S.
, and
Giles
,
M.
,
2000
, “
Flutter and Forced Response of Mistuned Turbomachinery
,” Oxford University Computing Laboratory, Report No. NA 00/20.
51.
Kielb
,
R. E.
,
Hall
,
K. C.
,
Hong
,
E.
, and
Pai
,
S. S.
,
2006
, “
Probabilistic Flutter Analysis of a Mistuned Bladed Disks
,”
ASME
Paper No. GT2006-90847.10.1115/GT2006-90847
52.
Whitehead
,
D. S.
,
1970
, “
Vibration and Sound Generation in a Cascade of Flat Plates in Subsonic Flow
,” Aeronautical Research Council, London, UK, Reports and Memoranda 3865.
53.
Nagashima
,
T.
, and
Whitehead
,
D. S.
,
1977
, “
Linearized Supersonic Unsteady Flow in Cascades
,” Aeronautical Research Council, London, UK, Reports and Memoranda 3811.
You do not currently have access to this content.