Abstract

The Gyroid is a type of triply periodic minimal surface (TPMS) that has interconnected, perfectly curved topologies and excellent thermomechanical properties. Due to its topological feature to enhance heat transfer and self-support structure, this study presents numerical investigations of the flow, heat transfer, and pressure loss in various Gyroid architectures in a wedge-shaped channel, representing a trailing edge cooling for gas turbine blades. The Gyroid structures are partly arranged near the outlet of the wedged channel or are fully filled within the wedged channel. The local and overall flow and heat transfer mechanisms with different Gyroid configurations are compared to the baseline pin fins within the Reynolds number range of 10,000–30,000. The results show that for the case with partly infilled Gyroid structures, the overall heat transfer enhancement is higher by 39–102%, and the related pressure loss is higher by 93–154% than the baseline pin fins. For the case with fully infilled Gyroid structures, the total heat transfer is superiorly higher by 157–188%, and the related pressure loss is higher by 248–555% than the baseline pin fins. For all the Gyroid configurations, obviously improved cooling uniformity is achieved on the whole trailing edge wall. The significant heat transfer enhancement in the trailing edge channel with Gyroid structures is mainly due to a much increased wetted area, the generated helical and impingement flow through the curved interconnected channels and improved flow distribution within the wedged channel.

References

1.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Zhang
,
J.
,
Zhang
,
S.
,
Wang
,
C.
, and
Tan
,
X.
,
2020
, “
Recent Advances in Film Cooling Enhancement: A Review
,”
Chin. J. Aeronaut.
,
33
(
4
), pp.
1119
1136
.10.1016/j.cja.2019.12.023
3.
Yeranee
,
K.
, and
Rao
,
Y.
,
2021
, “
A Review of Recent Studies on Rotating Internal Cooling for Gas Turbine Blades
,”
China J. Aeronaut.
,
34
(
7
), pp.
85
113
.10.1016/j.cja.2020.12.035
4.
Liang
,
C.
, and
Rao
,
Y.
,
2020
, “
Computational Analysis of Rotating Effects on Heat Transfer and Pressure Loss of Turbulent Flow in Detached Pin Fin Arrays With Various Clearances
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
12
), p.
121803
.10.1115/1.4048476
5.
Rao
,
Y.
, and
Zang
,
S.
,
2014
, “
Flow and Heat Transfer Characteristics in Latticework Cooling Channels With Dimple Vortex Generators
,”
ASME J. Turbomach.
,
136
(
2
), p.
021017
.10.1115/1.4025197
6.
Luo
,
L.
,
Yan
,
H.
,
Du
,
W.
,
Su
,
W.
,
Wang
,
S.
, and
Huang
,
D.
,
2022
, “
Numerical Study of a Novel Curved Pin Fin for Heat Transfer Enhancement Within Aeroengine Turbine Blade
,”
Aerosp. Sci. Technol.
,
123
, p.
107436
.10.1016/j.ast.2022.107436
7.
Cunha
,
F. J.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-Edge Cooling for Gas Turbines
,”
J. Propuls. Power
,
22
(
2
), pp.
286
300
.10.2514/1.20898
8.
Bianchini
,
C.
,
Facchini
,
B.
,
Simonetti
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2012
, “
Numerical and Experimental Investigation of Turning Flow Effects on Innovative Pin Fin Arrangements for Trailing Edge Cooling Configurations
,”
ASME J. Turbomach.
,
134
(
2
), p.
021005
.10.1115/1.4003230
9.
Beniaiche
,
A.
,
Ghenaiet
,
A.
, and
Facchini
,
B.
,
2017
, “
Experimental and Numerical Investigations of Internal Heat Transfer in an Innovative Trailing Edge Blade Cooling System: Stationary and Rotation Effects, Part 1—Experimental Results
,”
Heat Mass Transfer
,
53
(
2
), pp.
475
490
.10.1007/s00231-016-1822-5
10.
Li
,
Y.
,
Xu
,
G.
,
Deng
,
H.
,
Qiu
,
L.
, and
Yu
,
X.
,
2016
, “
Effects of Coolant Mass Flow Rate Ratio on Heat Transfer in a Two-Inlet Rotating Wedge-Shaped Channel
,”
Int. J. Heat Mass Transfer
,
96
, pp.
353
361
.10.1016/j.ijheatmasstransfer.2016.01.046
11.
Liang
,
C.
,
Rao
,
Y.
,
Luo
,
J.
, and
Luo
,
X.
,
2021
, “
Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fins for Turbine Blade Trailing Edge Cooling
,”
Int. J. Heat Mass Transfer
,
178
, p.
121590
.10.1016/j.ijheatmasstransfer.2021.121590
12.
Liang
,
C.
,
Rao
,
Y.
,
Chen
,
J.
, and
Zhang
,
P.
,
2022
, “
Experimental and Numerical Study of the Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fin Arrays Under Rotating Conditions
,”
ASME J. Turbomach.
,
144
(
7
), p.
071007
.10.1115/1.4053488
13.
Shen
,
B.
,
Li
,
Y.
,
Yan
,
H.
,
Boetcher
,
S. K. S.
, and
Xie
,
G.
,
2019
, “
Heat Transfer Enhancement of Wedge-Shaped Channels by Replacing Pin Fins With Kagome Lattice Structures
,”
Int. J. Heat Mass Transfer
,
141
, pp.
88
101
.10.1016/j.ijheatmasstransfer.2019.06.059
14.
Yeranee
,
K.
, and
Rao
,
Y.
,
2022
, “
A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded With Triply Periodic Minimal Surfaces (TPMS
),”
Energies
,
15
(
23
), p.
8994
.10.3390/en15238994
15.
Speirs
,
M.
,
Van Hooreweder
,
B.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2017
, “
Fatigue Behaviour of NiTi Shape Memory Alloy Scaffolds Produced by SLM, a Unit Cell Design Comparison
,”
J. Mech. Behav. Biomed. Mater.
,
70
, pp.
53
59
.10.1016/j.jmbbm.2017.01.016
16.
Al-Ketan
,
O.
,
Rowshan
,
R.
, and
Abu Al-Rub
,
R. K.
,
2018
, “
Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials
,”
Addit. Manuf.
,
19
, pp.
167
183
.10.1016/j.addma.2017.12.006
17.
Wang
,
N.
,
Meenashisundaram
,
G. K.
,
Chang
,
S.
,
Fuh
,
J. Y. H.
,
Dheen
,
S. T.
, and
Senthil Kumar
,
A.
,
2022
, “
A Comparative Investigation on the Mechanical Properties and Cytotoxicity of Cubic, Octet, and TPMS Gyroid Structures Fabricated by Selective Laser Melting of Stainless Steel 316 L
,”
J. Mech. Behav. Biomed. Mater.
,
129
, p.
105151
.10.1016/j.jmbbm.2022.105151
18.
Teng
,
F.
,
Sun
,
Y.
,
Guo
,
S.
,
Gao
,
B.
, and
Yu
,
G.
,
2022
, “
Topological and Mechanical Properties of Different Lattice Structures Based on Additive Manufacturing
,”
Micromachines
,
13
(
7
), p.
1017
.10.3390/mi13071017
19.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Flow and Thermal Transport Characteristics of Triply-Periodic Minimal Surface (TPMS)-Based Gyroid and Schwarz-P Cellular Materials
,”
Numer. Heat Transfer Part A Appl.
,
79
(
8
), pp.
553
569
.10.1080/10407782.2021.1872260
20.
Yinzheng
,
Z.
,
2019
, “
Numerical Analysis on Fluid-Solid Coupling Cooling of Minimal Surface Lattice Structure
,”
J. Phys. Conf. Ser.
,
1187
(
3
), p.
032070
.10.1088/1742-6596/1187/3/032070
21.
Al-Ketan
,
O.
,
Ali
,
M.
,
Khalil
,
M.
,
Rowshan
,
R.
,
Khan
,
K. A.
, and
Abu Al-Rub
,
R. K.
,
2021
, “
Forced Convection Computational Fluid Dynamics Analysis of Architected and Three-Dimensional Printable Heat Sinks Based on Triply Periodic Minimal Surfaces
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021010
.10.1115/1.4047385
22.
Al‐Ketan
,
O.
, and
Abu Al‐Rub
,
R. K.
,
2021
, “
MSLattice: A Free Software for Generating Uniform and Graded Lattices Based on Triply Periodic Minimal Surfaces
,”
Mater. Des. Process. Commun.
,
3
(
6
), pp.
1
10
.10.1002/mdp2.205
23.
Peng
,
H.
,
Gao
,
F.
, and
Hu
,
W.
,
2019
, “
Design, Modeling and Characterization of Triply Periodic Minimal Surface Heat Exchangers With Additive Manufacturing
,”
Proceedings of 30th Annual International Solid Freeform Fabrication Symposium– An Additive Manufacturing Conference
, Austin, TX, Aug. 12–14, pp.
2325
2337
.https://utw10945.utweb.utexas.edu/sites/default/files/2019/194%20Design%2C%20Modeling%20and%20Characterization%20of%20Triply%20Pe.pdf
24.
Sinha
,
A.
,
Swain
,
B.
,
Behera
,
A.
,
Mallick
,
P.
,
Samal
,
S. K.
,
Vishwanatha
,
H. M.
, and
Behera
,
A.
,
2022
, “
A Review on the Processing of Aero-Turbine Blade Using 3D Print Techniques
,”
J. Manuf. Mater. Process.
,
6
(
1
), p.
16
.10.3390/jmmp6010016
25.
Li
,
W.
,
Yu
,
G.
, and
Yu
,
Z.
,
2020
, “
Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces for Supercritical CO2 Cycles
,”
Appl. Therm. Eng.
,
179
, p.
115686
.10.1016/j.applthermaleng.2020.115686
26.
Rao
,
Y.
,
Wan
,
C.
,
Xu
,
Y.
, and
Zang
,
S.
,
2011
, “
Spatially-Resolved Heat Transfer Characteristics in Channels With Pin Fin and Pin Fin-Dimple Arrays
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2277
2289
.10.1016/j.ijthermalsci.2011.06.013
27.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
28.
Boyce
,
M. P.
, ed.,
2012
, “
Materials, Gas Turbine Engineering Handbook
,”
Elsevier
,
Oxford
, UK, pp.
493
514
.10.1016/B978-0-12-383842-1.00011-1
You do not currently have access to this content.