Abstract

This contribution presents a catalogue of open turbomachinery blade models dedicated to nonlinear dynamics simulations. Based on a specifically developed in-house computer code, three-dimensional computer-aided design (CAD) models and finite element (FE) models of multiple-circular-arc (MCA) NASA airfoils are generated. Both the in-house code and the models are made freely accessible online. To cover a wide range of geometries, 39 blades are considered from different stages and with different aspect ratios. It is expected that this blade catalogue will provide an opportunity for the direct comparison of recently developed methodologies relative to nonlinear vibration phenomena in turbomachines, including rubbing events and blade-tip/casing contacts. To this end, the paper also contains original results for some of the most emblematic NASA blades, with an emphasis on nonlinear interaction maps and a detailed presentation of redesign operations to mitigate high amplitude of vibrations when blade-tip/casing contacts occur.

References

1.
Li
,
Z.
, and
Zheng
,
X.
,
2017
, “
Review of Design Optimization Methods for Turbomachinery Aerodynamics
,”
Prog. Aerosp. Sci.
,
93
, pp.
1
23
.10.1016/j.paerosci.2017.05.003
2.
Aulich
,
M.
, and
Siller
,
U.
,
2011
, “
High-Dimensional Constrained Multiobjective Optimization of a Fan Stage
,” ASME Paper No. GT2011-45618.10.1115/GT2011-45618
3.
Chahine
,
C.
,
Verstraete
,
T.
, and
He
,
L.
,
2015
, “
Multidisciplinary Design Optimization of an Aero-Engine Fan Blade With Consideration of Bypass and Core Performance
,”
Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimization
, Sydney, Australia, June 7–12.https://www.researchgate.net/publication/312085794_Multidisciplinary_Design_Optimization_of_an_Aero-Engine_Fan_Blade_with_Consideration_of_Bypass_and_Core_Performance
4.
International Energy Agency
,
2021
, “
Net Zero by 2050, a Roadmap for the Global Energy Sector
,”
International Energy Agency
, Paris, France, accessed Dec. 20, 2022, https://www.iea.org/reports/net-zero-by-2050
5.
Erler
,
E.
,
Vo
,
H. D.
, and
Yu
,
H.
,
2016
, “
Desensitization of Axial Compressor Performance and Stability to Tip Clearance Size
,”
ASME J. Turbomach.
,
138
(
3
), p.
031006
.10.1115/1.4031865
6.
Delhez
,
E.
,
Nyssen
,
F.
,
Golinval
,
J.-C.
, and
Batailly
,
A.
,
2021
, “
Assessment of Geometric Nonlinearities Influence on NASA Rotor 37 Response to Blade Tip/Casing Rubbing Events
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111022
.10.1115/1.4051968
7.
Ma
,
H.
,
Yin
,
F.
,
Guo
,
Y.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
A Review on Dynamic Characteristics of Blade–Casing Rubbing
,”
Nonlinear Dyn.
,
84
(
2
), pp.
437
472
.10.1007/s11071-015-2535-x
8.
Thorin
,
A.
,
Delezoide
,
P.
, and
Legrand
,
M.
,
2017
, “
Non-Smooth Modal Analysis of Piecewise-Linear Impact Oscillators
,”
SIAM J. Appl. Dyn. Syst.
,
16
(
3
), pp.
1710
1747
.10.1137/16M1081506
9.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems: Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
, pp.
59
71
.10.1016/j.compstruc.2015.03.008
10.
Legrand
,
M.
,
Batailly
,
A.
,
Magnain
,
B.
,
Cartraud
,
P.
, and
Pierre
,
C.
,
2012
, “
Full Three-Dimensional Investigation of Structural Contact Interactions in Turbomachines
,”
J. Sound Vib.
,
331
(
11
), pp.
2578
2601
.10.1016/j.jsv.2012.01.017
11.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495.10.1115/GT2011-45495
12.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
13.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2021
, “
Development of a Harmonic Balance Method-Based Numerical Strategy for Blade-Tip/Casing Interactions: Application to NASA Rotor 37
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111025
.10.1115/1.4051967
14.
Petrov
,
E. P.
,
2012
, “
Multiharmonic Analysis of Nonlinear Whole Engine Dynamics With Bladed Disc-Casing Rubbing Contacts
,”
ASME
Paper No. GT2012-68474.10.1115/GT2012-68474
15.
Moore
,
R. D.
, and
Reid
,
L.
,
1980
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 2.05
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-1659
.https://ntrs.nasa.gov/citations/19800012840
16.
Denton
,
J. D.
,
1997
, “
Lessons From Rotor 37
,”
J. Therm. Sci.
,
6
(
1
), pp.
1
13
.10.1007/s11630-997-0010-9
17.
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blade/Casing Rubbing Interactions in Aircraft Engines: Numerical Benchmark and Design Guidelines Based on NASA Rotor 37
,”
J. Sound Vib.
,
460
, p.
114878
.10.1016/j.jsv.2019.114878
18.
Kojtych
,
S.
,
Nyssen
,
F.
,
Audet
,
C.
, and
Batailly
,
A.
,
2023
, “
Methodology for the Redesign of Compressor Blades Undergoing Nonlinear Structural Interactions: Application to Blade-Tip/Casing Contacts
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051002
.10.1115/1.4055681
19.
Piollet
,
E.
, and
Batailly
,
A.
,
2019
, “
A Program to Compute Compressor Blade Geometries From Multiple-Circular-Arc Parameters With Sweep and Lean(v1.0)
,” accessed Dec. 20, 2022, hal.archives-ouvertes.fr/hal-02127993
20.
Monjaraz Tec
,
C. D.
,
Gross
,
J.
, and
Krack
,
M.
,
2022
, “
A Massless Boundary Component Mode Synthesis Method for Elastodynamic Contact Problems
,”
Comput. Struct.
,
260
, p.
106698
.10.1016/j.compstruc.2021.106698
21.
Hagita
,
Y.
,
Miyazawa
,
H.
,
Furusawa
,
T.
,
Yamamoto
,
S.
,
Yonezawa
,
K.
,
Umezawa
,
S.
,
Ohmori
,
S.
, and
Suzuki
,
T.
,
2022
, “
The Effect of Partial-Load Operation on a Gas Turbine Compressor of an Advanced Combined Cycle Power Plant
,” ASME Paper No. GT2022-80251.10.1115/GT2022-80251
22.
de Cherisey
,
M.
,
Salles
,
L.
,
Renson
,
L.
,
Vizzaccaro
,
A.
, and
Wong
,
C.
,
2022
, “
Optimization of a Turbomachinery Blade With Regards to Tip-Rub Events
,” ASME Paper No. GT2022-82005.10.1115/GT2022-82005
23.
Lainé
,
J.
,
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blackbox Optimization for Aircraft Engine Bladed Components Featuring Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p. 061016.10.1115/1.4042808
24.
Kojtych
,
S.
, and
Batailly
,
A.
,
2023
, “
OpenMCAD, an Open Blade Generator: From Multiple-Circular-Arc Profiles to Computer-Aided Design Model
,” accessed Dec. 20, 2022, hal.science/hal-03923093
25.
Crouse
,
J. E.
,
Janetzke
,
D. C.
, and
Schwirian
,
R. E.
,
1969
, “
A Computer Program for Composing Compressor Blading From Simulated Circular-Arc Elements on Conical Surfaces
,”
NASA Lewis Research Center
Cleveland, OH
, Report No.
NASA-TN-D-5437
.https://ntrs.nasa.gov/citations/19690027504
26.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP 1337
.https://ntrs.nasa.gov/citations/19780025165
27.
Kojtych
,
S.
, and
Batailly
,
A.
,
2023
, “
A Catalogue of Open NASA Blade Models
,” accessed Dec. 20, 2022, hal.science/hal-03945336
28.
Hager
,
R. D.
, and
Lewis
,
G. W.
,
1974
, “
Effect of Damper on Overall and Blade-Element Performance of a Compressor Rotor Having a Tip Speed of 1151 Feet per Second and an Aspect Ratio of 3.6
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-3041
.https://ntrs.nasa.gov/api/citations/19740018135/downloads/19740018135.pdf
29.
Hager
,
R. D.
,
Janetzke
,
D. C.
, and
Reid
,
L.
,
1972
, “
Performance of a 1380-Foot-per-Second-Tip-Speed Axial-Flow Compressor Rotor With a Blade Tip Solidity of 1.3
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2448
.https://ntrs.nasa.gov/citations/19720012341
30.
Janetzke
,
D. C.
,
Ball
,
C. L.
, and
Hager
,
R. D.
,
1972
, “
Performance of 1380-Foot-per-Second-Tip-Speed Axial-Flow Compressor Rotor With Blade Tip Solidity of 1.1
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2449
.https://ntrs.nasa.gov/citations/19720012341
31.
Ball
,
C. L.
,
Janetzke
,
D. C.
, and
Reid
,
L.
,
1972
, “
Performance of 1380-Foot-per-Second-Tip-Speed Axial-Flow Compressor Rotor With Blade Tip Solidity of 1.5
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2379
.https://ntrs.nasa.gov/citations/19720007339
32.
Reid
,
L.
, and
Kovich
,
G.
,
1973
, “
Overall and Blade-Element Performance of a Transonic Compressor Stage With Multiple-Circular-Arc Blades at Tip Speed of 419 Meters per Second
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2731
.https://ntrs.nasa.gov/citations/19730011268
33.
Urasek
,
D. C.
, and
Janetzke
,
D. C.
,
1972
, “
Performance of Tandem-Bladed Transonic Compressor Rotor With Tip Speed of 1375 Feet per Second
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2484
.https://ntrs.nasa.gov/citations/19720011123
34.
Osborn
,
W. M.
,
Urasek
,
D. C.
, and
Moore
,
R. D.
,
1973
, “
Performance of a Single-Stage Transonic Compressor With a Blade-Tip Solidity of 1.5 and Comparison With 1.3- and 1.7-Solidity Stages
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2926
.https://ntrs.nasa.gov/citations/19740002621
35.
Kovich
,
G.
,
Moore
,
R. D.
, and
Urasek
,
D. C.
,
1973
, “
Performance of Transonic Fan Stage With Weight Flow per Unit Annulus Area of 198 Kilograms per Second per Square Meter (40.6 (lb/sec)/sq ft)
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2905
.https://lava-wiki.meca.polymtl.ca/_media/public/modeles/rotor_11/rotor11.pdf
36.
Reid
,
L.
, and
Moore
,
R. D.
,
1972
, “
Performance of a Single-Stage Transonic Compressor With a Blade-Tip Solidity of 1.7
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2658
.https://ntrs.nasa.gov/citations/19730006256
37.
Moore
,
R. D.
,
Urasek
,
D. C.
, and
Osborn
,
W. M.
,
1972
, “
Performance of a Single-Stage Transonic Compressor With a Blade-Tip Solidity of 1.3
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No. NASA-TM X-2645.https://ntrs.nasa.gov/citations/19730002275
38.
Gelder
,
T. F.
, and
Lewis
,
G. W.
,
1974
, “
Aerodynamic Performance of 0.5-Meter-Diameter, 337-Meter-per-Second Tip Speed, 1.5-Pressure-Ratio, Single-Stage Fan Designed for Low Noise Aircraft Engines
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TN D-7836
.https://ntrs.nasa.gov/citations/19750006695
39.
Moore
,
R. D.
,
Urasek
,
D. C.
, and
Kovlch
,
G.
,
1973
, “
Performance of Transonic Fan Stage With Weight Flow per Unit Annulus Area of 178 Kilograms per Second per Square Meter (36.5 (lb/sec)/sq ft)
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2904
.https://ntrs.nasa.gov/api/citations/19740001906/downloads/19740001906.pdf
40.
Urasek
,
D. C.
,
Kovich
,
G.
, and
Moore
,
R. D.
,
1973
, “
Performance of Transonic Fan Stage With Weight Flow per Unit Annulus Area of 208 Kilograms per Second per Square Meter (42.6 (lb/sec)/sq ft)
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2903
.https://ntrs.nasa.gov/citations/19740001910
41.
Lewis
,
G. W.
,
Reid
,
L.
, and
Tysl
,
E. R.
,
1974
, “
Design and Performance of a High-Pressure-Ratio, Highly Loaded Axial-Flow Transonic Compressor Stage
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-3100
.https://ntrs.nasa.gov/citations/19740025108
42.
Moore
,
R. D.
,
Lewis
,
G. W.
, and
Osborn
,
W. M.
,
1978
, “
Performance of a Transonic Fan Stage Designed for a Low Meridional Velocity Ratio
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-1298
.https://ntrs.nasa.gov/citations/19780025164
43.
Schmidt
,
J. F.
, and
Ruggeri
,
R. S.
,
1978
, “
Performance With and Without Inlet Radial Distortion of a Transonic Fan Stage Designed for Reduced Loading in the Tip Region
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-1294
.https://ntrs.nasa.gov/citations/19780022114
44.
Britsch
,
W. R.
,
Osborn
,
W. M.
, and
Laessig
,
M. R.
,
1979
, “
Effects of Diffusion Factor, Aspect Ratio, and Solidity on Overall Performance of 14 Compressor Middle Stages
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-1523
.https://ntrs.nasa.gov/api/citations/19790025039/downloads/19790025039.pdf
45.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-1338
.https://ntrs.nasa.gov/citations/19790001889
46.
Reid
,
L.
, and
Moore
,
R. D.
,
1982
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.63 and 1.78, Respectively, and With Design Pressure Ratio of 1.82
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-1974
.https://ntrs.nasa.gov/api/citations/19820014395/downloads/19820014395.pdf
47.
Moore
,
R. D.
, and
Reid
,
L.
,
1982
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.63 and 1.77, Respectively, and With Design Pressure Ratio of 2.05
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-2001
.https://ntrs.nasa.gov/api/citations/19820014395/downloads/19820014395.pdf
48.
Osborn
,
W. M.
, and
Steinke
,
R. J.
,
1974
, “
Performance of a 1.15-Pressure-Ratio Axial-Flow Fan Stage With a Blade Tip Solidity of 0.5
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-3052
.https://ntrs.nasa.gov/citations/19740021256
49.
Kovich
,
G.
, and
Steinke
,
R. J.
,
1976
, “
Performance of a Low-Pressure-Ratio Low-Tip-Speed Fan Stage With Blade Tip Solidity of 0.65
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-3341
.https://ntrs.nasa.gov/citations/19760009985
50.
Moore
,
R. D.
, and
Steinke
,
R. J.
,
1974
, “
Aerodynamic Performance of a 1.25-Pressure-Ratio Axial-Flow Fan Stage
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-3083
.https://ntrs.nasa.gov/citations/19740026337
51.
Osborn
,
W. M.
,
Moore
,
R. D.
, and
Steinke
,
R. J.
,
1978
, “
Aerodynamic Performance of a 1.35-Pressure-Ratio Axial-Flow Fan Stage
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-1299
.https://ntrs.nasa.gov/api/citations/19790001851/downloads/19790001851.pdf
52.
Lewis
,
G. W.
, and
Moore
,
R. D.
,
1976
, “
Aerodynamic Performance of a 1.20-Pressure-Ratio Fan Stage Designed for Low Noise
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-3430
.https://ntrs.nasa.gov/citations/19760026047
53.
Lewis
,
G. W.
,
Moore
,
R. D.
, and
Kovich
,
G.
,
1973
, “
Performance of a 1.20-Pressure-Ratio STOL Fan Stage at Three Rotor Blade Setting Angles
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-2837
.https://ntrs.nasa.gov/citations/19730018974
54.
Moore
,
R. D.
,
Kovich
,
G.
, and
Tysl
,
E. R.
,
1976
, “
Aerodynamic Performance of 0.4066-Scale Model to JT8D Refan Stage
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-3356
.https://ntrs.nasa.gov/citations/19760017065
55.
Urasek
,
D. C.
,
Steinke
,
R. J.
, and
Lewis
,
G. W.
,
1976
, “
Performance of Inlet Stage of Transonic Compressor
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TM X-3345
.https://ntrs.nasa.gov/citations/19760009935
56.
Urasek
,
D. C.
,
Gorrell
,
W. T.
, and
Cunnan
,
W. S.
,
1979
, “
Performance of Two-Stage Fan Having Low-Aspect-Ratio First-Stage Rotor Blading
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-1493
.https://ntrs.nasa.gov/citations/19790018972
57.
Steinke
,
R. J.
,
1986
, “
Design of 9.271-Pressure-Ratio Five-Stage Core Compressor and Overall Performance for First Three Stages
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
NASA-TP-2597
.https://ntrs.nasa.gov/citations/19870008266
58.
Kojtych
,
S.
,
2022
, “
Contributions à L'optimisation de Systèmes Mécaniques Non Réguliers: Reconception D'aubes de Compresseur
,” Ph.D. thesis,
Polytechnique de Montréal
,
Montréal, QC, Canada
.
59.
Colaïtis
,
Y.
,
2021
, “
Stratégie Numérique Pour L'analyse Qualitative Des Interactions Aube/Carter
,” Ph.D. thesis,
Département de génie mécanique, École Polytechnique de Montréal
,
Montréal, QC, Canada
.
60.
Hulme
,
C. J.
,
Fiebiger
,
S. W.
, and
Szwedowicz
,
J.
,
2015
, “
Axial Compressor Blade Failure, Design Modification, and Its Validation
,”
ASME
Paper No. GT2015-43312.10.1115/GT2015-43312
61.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
62.
Jain
,
S.
, and
Haller
,
G.
,
2022
, “
How to Compute Invariant Manifolds and Their Reduced Dynamics in High-Dimensional Finite Element Models
,”
Nonlinear Dyn.
,
107
(
2
), pp.
1417
1450
.10.1007/s11071-021-06957-4
63.
Buza
,
G.
,
Jain
,
S.
, and
Haller
,
G.
,
2021
, “
Using Spectral Submanifolds for Optimal Mode Selection in Nonlinear Model Reduction
,”
Proc. R. Soc. A
,
477
(
2246
), p.
20200725
.10.1098/rspa.2020.0725
64.
Benner
,
P.
,
Gugercin
,
S.
, and
Willcox
,
K.
,
2015
, “
A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
,”
SIAM Rev.
,
57
(
4
), pp.
483
531
.10.1137/130932715
65.
Batailly
,
A.
, and
Millecamps
,
A.
,
2016
, “
Minimising Clearance Consumption: A Key Factor for the Design of Blades Robust to Rotor/Stator Interactions?
,”
ASME
Paper No. GT2016-56721.10.1115/GT2016-56721
66.
Le Digabel
,
S.
,
2011
, “
Algorithm 909: NOMAD: Nonlinear Optimization With the MADS Algorithm
,”
ACM Trans. Math. Software
,
37
(
4
), pp.
1
15
.10.1145/1916461.1916468
67.
Audet
,
C.
, and
Dennis
,
J. E.
, Jr.
,
2006
, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
(
1
), pp.
188
217
.10.1137/040603371
You do not currently have access to this content.