Abstract

The transient turbine tip clearance (δ) throughout the engine process is crucial to modern high-performance aero engines. However, there is still a lack of efficient and accurate transient prediction models of tip clearances with active thermal control (ATC) system, especially for the tip clearances of the complex turbine structures with various parameters. This study develops a transient prediction model for the tradeoff between computational efficiency and accuracy, which includes an offline dataset generation process and an online δ prediction process. The offline dataset is first generated using an in-house finite element analysis code, which is validated against a transient tip clearance experiment, and data splicing and sensitivity analysis are applied to enrich the sample features and reduce the input parameters' dimensionality. Then, the long short-term memory neural network (LSTM) is employed to learn the transient tip clearances' timing information. The time consumption for the transient prediction model is significantly shorter than that for the tip clearance calculation method by three orders, and the maximum relative error is as low as 3.59%. In addition, the transient characteristics, including the overshoot value (σ) and the response time (ts), are investigated with different jet Reynolds numbers (Rec) and temperatures (Tfc) of ATC cooling flow. The ts decreases with larger Rec and smaller Tfc due to a more significant cooling effect. However, the σ increases with the increase of Rec and Tfc due to the different sensitivity of cooling parameters. This study provides a reference for the transient tip clearance prediction and the adjustments in the cooling strategies.

References

1.
Wiseman
,
M. W.
, and
Guo
,
T. H.
,
2001
, “
An Investigation of Life Extending Control Techniques for Gas Turbine Engines
,”
Proceeding of the American Control Conference
, Arlington, VA, June 25–27, pp.
3706
3707
.10.1109/ACC.2001.946211
2.
Sun
,
H.
,
Wang
,
J.
,
Chen
,
K.
,
Xia
,
H.
,
Feng
,
X.
, and
Chang
,
Z.
,
2021
, “
A Tip Clearance Prediction Model for Multistage Rotors and Stators in Aero-Engines
,”
Chin. J. Aeronaut.
,
34
(
2
), pp.
343
357
.10.1016/j.cja.2020.09.015
3.
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2022
, “
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
,”
AIAA
Paper No. 2002-3790. 10.2514/6.2002-3790
4.
Peng
,
K.
,
Fan
,
D.
,
Yang
,
F.
,
Fu
,
Q.
, and
Li
,
Y.
,
2013
, “
Active Generalized Predictive Control of Turbine Tip Clearance for Aero-Engines
,”
Chin. J. Aeronaut.
,
26
(
5
), pp.
1147
1155
.10.1016/j.cja.2013.07.005
5.
Shih
,
T. I.
, and
Yang
,
V.
,
2014
,
Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
6.
Da
,
S. R.
,
Bianchini
,
C.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Mazzei
,
L.
,
2016
, “
Heat Transfer Augmentation Due to Coolant Extraction on the Cold Side of Active Clearance Control Manifolds
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021507
.10.1115/1.4031383
7.
Andreini
,
A.
, and
Da
,
S. R.
,
2012
, “
Numerical Characterization of Aerodynamic Losses of Jet Arrays for Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
052504
.10.1115/1.4005216
8.
Liu
,
F.
,
Mao
,
J.
,
Han
,
C.
,
Liu
,
Y.
,
Han
,
X.
, and
Liang
,
F.
,
2019
, “
Study of a Cooling Feed Pipe With a Covering Plate on a Ribbed Turbine Case
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071024
.10.1115/1.4043445
9.
Yang
,
Y.
,
Mao
,
J.
,
Wang
,
F.
, and
Han
,
X.
,
2022
, “
Unsteady Analysis of Jet Impingement Under Vibration Conditions
,”
Chin. J. Aeronaut.
,
35
(
5
), pp.
291
308
.10.1016/j.cja.2021.09.004
10.
Melcher
,
K. J.
, and
Kypuros
,
J. A.
,
2003
, “
Toward a Fast-Response Active Turbine Tip Clearance Control
,” Report No.
NASA/TM-2003-212627
.https://ntrs.nasa.gov/citations/20040031316
11.
Kypuros
,
J. A.
, and
Melcher
,
K. J.
,
2003
, “
A Reduced Model for Prediction of Thermal and Rotational Effects on Turbine Tip Clearance
,” Report No.
NASA/TM-2003-212226
.https://ntrs.nasa.gov/api/citations/20030032933/downloads/20030032933.pdf
12.
Chapman
,
J. W.
,
Kratz
,
J.
,
Guo
,
T.
, and
Litt
,
J.
,
2016
, “
Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation
,”
AIAA
Paper No. 2016-5047. 10.2514/6.2016-5047
13.
Li
,
Z.
,
Li
,
Y. G.
, and
Sampath
,
S.
,
2022
, “
Aeroengine Transient Performance Simulation Integrated With Generic Heat Soakage and Tip Clearance Model
,”
Aeronaut. J.
,
126
(
1302
), pp.
1265
1287
.10.1017/aer.2022.15
14.
Luo
,
D.
,
Yan
,
H.
,
Zeng
,
J.
,
Zeng
,
J.
, and
Guo
,
D.
,
2017
, “
Cocooning Thermal Analysis for TBCC Engine
,”
AIAA
Paper No. 2017-2293
.10.2514/6.2017-2293
15.
Ekong
,
G. I.
,
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2013
, “
The Effect of Heat Transfer Coefficient Increase on Tip Clearance Control in H.P. Compressors in Gas Turbine Engine
,”
ASME
Paper No. IMECE2013-64958.10.1115/IMECE2013-64958
16.
Ekong
,
G. I.
,
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2012
, “
Tip Clearance Control Concept in Gas Turbine H.P. Compressors
,”
ASME
Paper No. IMECE2012-93063.10.1115/IMECE2012-93063
17.
Kumar
,
R.
,
Kumar
,
V. S.
,
Butt
,
M. M.
,
Sheikh
,
N. A.
,
Khan
,
S. A.
, and
Afzal
,
A.
,
2020
, “
Thermo-Mechanical Analysis and Estimation of Turbine Blade Tip Clearance of a Small Gas Turbine Engine Under Transient Operating Conditions
,”
Appl. Therm. Eng.
,
179
, p.
115700
.10.1016/j.applthermaleng.2020.115700
18.
Jia
,
B.
,
Zhang
,
X.
, and
Hou
,
Y.
,
2012
, “
Turbine Blade Tip Clearance Dynamic Modeling Using Least Square Support Vector Machines
,”
Comput. Simul.
,
29
(
4
), pp.
95
101
.
19.
Huang
,
X.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Xiong
,
Y.
,
Liu
,
H.
, and
Zhu
,
K.
,
2022
, “
Fault Diagnosis for Three-Dimension Blade Tip Clearance Based on Turbine Blade Crack by New Improved Deep Belief Networks
,”
J. Vib., Meas. Diagn.
,
42
(
2
), pp.
213
219
.
20.
Huang
,
X.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Xiong
,
Y.
,
Liu
,
H.
, and
Fan
,
B.
,
2022
, “
Dynamical Response Feature Analysis Based on 3-Dimensional Blade Tip Clearance and Diagnosis Method for Blade Crack
,”
J. Aerosp. Power
,
37
(
9
), pp.
1923
1935
.10.13224/j.cnki.jasp.20220030
21.
Huang
,
X.
,
Zhang
,
X.
,
Xiong
,
Y.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2021
, “
A Novel Intelligent Fault Diagnosis Approach for Early Cracks of Turbine Blades Via Improved Deep Belief Network Using Three-Dimensional Blade Tip Clearance
,”
IEEE Access
,
9
, pp.
13039
13051
.10.1109/ACCESS.2021.3052217
22.
Wu
,
J.
,
Feng
,
C.
,
Song
,
F.
,
Yuan
,
S.
, and
Yu
,
Z.
,
2023
, “
A Sparse Basis Compressed Sensing Tip Clearance Data Reconstruction Method Was Trained With K-SVD Dictionary
,”
Mech. Sci. Technol. Aerosp. Eng.
,
42
(
7
), pp.
1158
1164
.10.13433/j.cnki.1003-8728.20220068
23.
Dimitrov
,
N.
, and
Göçmen
,
T.
,
2022
, “
Virtual Sensors for Wind Turbines With Machine Learning Based Time Series Models
,”
Wind Energy
,
25
(
9
), pp.
1626
1645
.10.1002/we.2762
24.
Cocchi
,
L.
,
Picchi
,
A.
,
Facchini
,
B.
,
Da
,
S. R.
,
Mazzei
,
L.
,
Tarchi
,
L.
,
Descamps
,
L.
, and
Rotenberg
,
M.
,
2022
, “
Effect of Jet-to-Jet Distance and Pipe Position on Flow and Heat Transfer Features of Active Clearance Control Systems
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041010
.10.1115/1.4052953
25.
Liu
,
F.
,
Mao
,
J.
,
Han
,
X.
, and
Gu
,
W.
,
2018
, “
Heat Transfer of Impinging Jet Arrays on a Ribbed Surface
,”
J. Thermophys. Heat Transfer
,
32
(
3
), pp.
669
679
.10.2514/1.T5288
26.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2013
, “
Experimental and Numerical Analysis of Multiple Impingement Jet Arrays for an Active Clearance Control System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031016
.10.1115/1.4007481
27.
Mao
,
J.
,
Yao
,
T.
,
Han
,
X.
,
He
,
Z.
, and
He
,
K.
,
2018
, “
Numerical Study of the Radiation Effect on the Jet Array Impinging Heat Transfer in a Feeding Pipe
,”
Numer. Heat Transfer Appl.
,
73
(
2
), pp.
125
142
.10.1080/10407782.2017.1421357
28.
Bi
,
S.
,
Mao
,
J.
,
Chen
,
P.
,
Han
,
F.
, and
Wang
,
L.
,
2023
, “
Effect of Multiple Cavities and Tip Injection on the Aerothermal Characteristics of the Squealer Tip in Turbine Stage
,”
Appl. Therm. Eng.
,
220
, p.
119631
.10.1016/j.applthermaleng.2022.119631
29.
Bozzi
,
L. D.
,
Angelo
,
E.
,
Facchini
,
B.
,
Micio
,
M.
, and
Da
,
S. R.
,
2011
, “
Experimental Investigation on Leakage Losses and Heat Transfer in a Non-Conventional Labyrinth Seal
,”
ASME
Paper No. GT2011-46362.10.1115/GT2011-46362
30.
Yang
,
S.
,
Du
,
W.
,
Luo
,
L.
, and
Wang
,
S.
,
2024
, “
Effects of Reynolds Number and Tooth Front Angle on Leakage Loss and Heat Transfer Characteristics in a Rotating Labyrinth Seal
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
1
), p.
011002
.10.1115/1.4063680
31.
Xu
,
Y.
,
2014
, “
Calculation Program Development of Radial Tip Clearance in Low-Pollution Civil Aero
,” Master thesis,
Nanjing University of Aeronautics and Astronautics
,
Nanjing, China
.
32.
Liu
,
Z.
,
2019
, “
Research on Method of Turbine Tip Clearance Prediction Considering Engine Performance Degradation
,” Master thesis,
Nanjing University of Aeronautics and Astronautics
,
Nanjing, China
.
33.
Yang
,
Y.
,
Mao
,
J.
,
Guo
,
N.
, ,
Chen
,
P.
, and
Wang
,
F.
,
2023
, “
Evaluation of Turbine Tip Clearance With Performance Degradation Using Multilayer Perceptron
,”
ASME J. Eng. Gas Turbines Power
,
145
(
9
), p.
091007
.10.1115/1.4062767
34.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
35.
Ma
,
Y.
,
Du
,
X.
, and
Sun
,
X.
,
2022
, “
Adaptive Modification of Turbofan Engine Nonlinear Model Based on LSTM Neural Networks and Hybrid Optimization Method
,”
Chin. J. Aeronaut.
,
35
(
9
), pp.
314
332
.10.1016/j.cja.2021.11.005
You do not currently have access to this content.