Abstract

A series of implicit large eddy simulations (ILES) is carried out to examine the characteristics of a leading edge (LE) separation bubble. The test case comprises a flat plate with an elliptic leading edge (ELE), which is equipped with a trailing edge flap. Simulations are carried out (a) at three different flap angles (20deg,30deg,90deg) and (b) using two different geometries of ELE where the ratio of the semimajor to semiminor axis is set to either 2:1 or 4:1. The flap is modeled using the immersed boundary method, which is computationally economical as it avoids regenerating the grid for varying flap angles. The results show that (a) the flow separates at lower flap deflection angles with a decrease in the aspect ratio of the ELE from 4:1 to 2:1 (b) an increase in the flap angle promotes separation at the LE due to an increase in the blockage in the bottom passage and a subsequent increase in the flow incidence at the leading edge. Simulations are also carried out using the γReθ transition model and comparisons are drawn against ILES and experiments. Although the qualitative trends predicted using both ILES and Reynolds-Averaged Navier–Stokes (RANS) agree with the experiments, both approaches predict relatively shorter separation bubbles. This is attributed to the excess flow blockage in experiments due to the support plates, which are not modeled in the simulations. Nevertheless, the results demonstrate the superior accuracy of ILES over the RANS model.

References

1.
Stieger
,
R.
, and
Hodson
,
H.
,
2004
, “
The Transition Mechanism of Highly Loaded Low-Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
.10.1115/1.1773850
2.
Rao
,
V. N.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
, and
Coull
,
J.
,
2013
, “
Large Eddy Simulations in Low-Pressure Turbines: Effect of Wakes at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
,
43
, pp.
85
95
.10.1016/j.ijheatfluidflow.2013.03.003
3.
Wakelam
,
C. T.
,
Hynes
,
T. P.
,
Hodson
,
H. P.
,
Evans
,
S. W.
, and
Chanez
,
P.
,
2012
, “
Separation Control for Aeroengine Intakes, Part 1: Low-Speed Investigation of Control Strategies
,”
J. Propul. Power
,
28
(
4
), pp.
758
765
.10.2514/1.B34326
4.
Vadlamani
,
N. R.
, and
Tucker
,
P. G.
,
2019
, “
Eddy Resolving Simulations of Intake Under Crosswinds
,”
Direct and Large-Eddy Simulation XI
,
Springer
, Switzerland, pp.
523
529
.
5.
Sarvankar
,
S. S.
,
Issai Arasu
,
A.
, and
Vadlamani
,
N. R.
,
2022
, “
Crosswind Aerodynamic Analysis Using Quasi 3D Ducts
,”
ASME
Paper No. GT2022-82964. 10.1115/GT2022-82964
6.
Goodhand
,
M.
,
2011
, “
Compressor Leading Edges
,” Ph.D. thesis,
University of Cambridge
, Cambridge, UK.
7.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.10.1017/S0022112099008976
8.
Bouchard
,
M.
,
Marty
,
J.
,
Deck
,
S.
, and
Costes
,
M.
,
2022
, “
Numerical Investigation of Self-Sustained Oscillations of Stall Cells around a Leading Edge-Separating Airfoil
,”
Physics of Fluids
,
34
(
11
), p. 115153.10.1063/5.0111550
9.
Anand
,
K.
, and
Sarkar
,
S.
,
2017
, “
Features of a Laminar Separated Boundary Layer Near the Leading-Edge of a Model Airfoil for Different Angles of Attack: An Experimental Study
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021201
.10.1115/1.4034606
10.
Marxen
,
O.
,
Lang
,
M.
,
Rist
,
U.
, and
Wagner
,
S.
,
2003
, “
A Combined Experimental/Numerical Study of Unsteady Phenomena in a Laminar Separation Bubble
,”
Flow, Turbul. Combust.
,
71
(
1–4
), pp.
133
146
.10.1023/B:APPL.0000014928.69394.50
11.
Dähnert
,
J.
,
Lyko
,
C.
, and
Peitsch
,
D.
,
2012
, “
Transition Mechanisms in Laminar Separated Flow Under Simulated Low Pressure Turbine Aerofoil Conditions
,”
ASME J. Turbomach.
,
135
(
1
), p.
011007
.10.1115/1.4006393
12.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.10.1017/jfm.2011.204
13.
Shyne
,
R. J.
,
Sohn
,
K.-H.
, and
De Witt
,
K. J.
,
1999
, “
Experimental Investigation of Boundary Layer Behavior in a Simulated Low Pressure Turbine
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
84
89
.10.1115/1.483229
14.
Genç
,
M. S.
,
Kaynak
,
Ü.
, and
Lock
,
G. D.
,
2009
, “
Flow Over an Aerofoil Without and With a Leading-Edge Slat at a Transitional Reynolds Number
,”
Proc. Inst. Mech. Eng., Part G
,
223
(
3
), pp.
217
231
.10.1243/09544100JAERO434
15.
Yang
,
Z.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.10.1017/S0022112001004633
16.
Bandopadhyay
,
T.
, and
Mistry
,
C. S.
,
2022
, “
Characterization of Leading-Edge Laminar Separation Bubble for Various Angles of Incidence and Reynolds Numbers
,”
J. Inst. Eng. (India): Ser. C
, pp.
1
20
.10.1007/s40032-022-00831-x
17.
Nagarajan
,
S.
,
Lele
,
S.
, and
Ferziger
,
J.
,
2007
, “
Leading-Edge Effects in Bypass Transition
,”
J. Fluid Mech.
,
572
, pp.
471
504
.10.1017/S0022112006001893
18.
Kim
,
J. W.
, and
Lee
,
D. J.
,
2003
, “
Characteristic Interface Conditions for Multiblock High-Order Computation on Singular Structured Grid
,”
AIAA J.
,
41
(
12
), pp.
2341
2348
.10.2514/2.6858
19.
Peers
,
E.
,
Zhang
,
X.
, and
Kim
,
J. W.
,
2010
, “
Patched Characteristic Interface Condition for High-Order Multiblock Aeroacoustic Computation
,”
AIAA J.
,
48
(
11
), pp.
2512
2522
.10.2514/1.J050130
20.
Weymouth
,
G. D.
, and
Yue
,
D. K.
,
2011
, “
Boundary Data Immersion Method for Cartesian-Grid Simulations of Fluid-Body Interaction Problems
,”
J. Comput. Phys.
,
230
(
16
), pp.
6233
6247
.10.1016/j.jcp.2011.04.022
21.
Schlanderer
,
S. C.
,
Weymouth
,
G. D.
, and
Sandberg
,
R. D.
,
2017
, “
The Boundary Data Immersion Method for Compressible Flows With Application to Aeroacoustics
,”
J. Comput. Phys.
,
333
, pp.
440
461
.10.1016/j.jcp.2016.12.050
22.
Gaitonde
,
D. V.
, and
Visbal
,
M.
,
1998
, “
High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI
,” Air Vehicles Directorte, Air Force Research Laboratory, Air Force Materiel.
23.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2002
, “
On the Use of Higher-Order Finite Difference Schemes on Curvilinear and Deforming Meshes
,”
J. Comput. Phys.
,
181
(
1
), pp.
155
185
.10.1006/jcph.2002.7117
24.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
1999
, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
,
37
(
10
), pp.
1231
1239
.10.2514/2.591
25.
Vadlamani
,
N. R.
,
Tucker
,
P. G.
, and
Durbin
,
P.
,
2018
, “
Distributed Roughness Effects on Transitional and Turbulent Boundary Layers
,”
Flow, Turbul. Combust.
,
100
(
3
), pp.
627
649
.10.1007/s10494-017-9864-4
26.
Lin
,
Y.
,
Vadlamani
,
R.
,
Savill
,
M.
, and
Tucker
,
P.
,
2017
, “
Wall-Resolved Large Eddy Simulation for Aeroengine Aeroacoustic Investigation
,”
Aeronaut. J.
,
121
(
1242
), pp.
1032
1050
.10.1017/aer.2017.54
27.
Park
,
J.
,
Kwon
,
K.
, and
Choi
,
H.
,
1998
, “
Numerical Solutions of Flow Past a Circular Cylinder at Reynolds Numbers Up to 160
,”
KSME Int. J.
,
12
(
6
), pp.
1200
1205
.10.1007/BF02942594
28.
Malathi Ananth
,
S.
,
Nardini
,
M.
,
Vaid
,
A.
,
Kozul
,
M.
,
Rao Vadlamani
,
N.
, and
Sandberg
,
R. D.
,
2023
, “
Riblet Performance Beneath Transitional and Turbulent Boundary Layers at Low Reynolds Numbers
,”
AIAA J.
,
61
(
5
), pp.
1986
2001
.10.2514/1.J062418
29.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2011
, “
An Assessment of the Laminar Kinetic Energy Concept for the Prediction of High-Lift, low-Reynolds Number Cascade Flows
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
995
1003
.10.1177/0957650911412444
30.
Vadlamani
,
N. R.
,
2014
, “
Numerical Investigation of Separated Flows in Low-Pressure Turbines
,” Ph.D. thesis,
University of Cambridge
, Cambridge, UK.
You do not currently have access to this content.