Abstract

The central rod-fastened rotor of gas turbine exhibits pronounced noncontinuous characteristics due to the large number of contact interfaces between the compressor and turbine disks. It is necessary to establish an accurate dynamic modeling method for the central rod-fastened rotor that fully considers the contact surface effect. In this work, the contact behavior of the rough surface is characterized by the fractal theory. The normal and tangential contact stiffness models are developed, and the influence of fractal parameters is discussed. Besides, the finite element model for the central rod-fastened rotor is established by developing an improved contact element considering the equivalent stiffness segment of Hirth couplings. Finally, the proposed model is verified by conducting the modal testing and measuring the first four modes of natural frequencies and modal shapes of the central rod-fastened rotor. The results show that the numerical results are in good agreement with the experimental ones, and the fractal contact model can effectively predict the connection stiffness of Hirth couplings, which in turn improves the simulation accuracy for the modal characteristics of the central rod-fastened rotor and provides a dynamic modeling approach with high efficiency and less computational complexity.

References

1.
Taplak
,
H.
, and
Parlak
,
M.
,
2012
, “
Evaluation of Gas Turbine Rotor Dynamic Analysis Using the Finite Element Method
,”
Measurement
,
45
(
5
), pp.
1089
1097
.10.1016/j.measurement.2012.01.032
2.
Meng
,
C.
,
Su
,
M.
, and
Wang
,
S.
,
2013
, “
An Investigation on Dynamic Characteristics of a Gas Turbine Rotor Using an Improved Transfer Matrix Method
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
122505
.10.1115/1.4025234
3.
Lee
,
A.-S.
, and
Lee
,
Y.-S.
,
2001
, “
Rotordynamic Characteristics of an APU Gas Turbine Rotor-Bearing System Having a Tie Shaft
,”
J. Mech. Sci. Technol.
,
15
(
2
), pp.
152
159
.https://koreascience.kr/article/JAKO200111920732827.pdf
4.
Jam
,
J.
,
Meisami
,
F.
, and
Nia
,
N.
,
2011
, “
Vibration Analysis of Tie-Rod/Tie-Bolt Rotors Using FEM
,”
Int. J. Eng. Sci. Technol.
,
3
(
10
), pp.
7292
7300
.https://ijest.info/docs/IJEST11-03-10-186.pdf
5.
Kim
,
Y.-C.
,
Han
,
S.-S.
, and
Kim
,
Y.-C.
,
2021
, “
Verification of Rotordynamic Design Using 1/5 Scaled Model Rotor of 270 MW-Class Gas Turbine Center-Tied Rotor
,”
Int. J. Precis. Eng. Manuf.
,
22
(
2
), pp.
271
285
.10.1007/s12541-020-00405-w
6.
Li
,
P.
, and
Yuan
,
Q.
,
2020
, “
Determination of Contact Stiffness and Damping of a Tie-Bolt Rotor With Interference Fits Using Model Updating With Thin-Layer Elements
,”
Shock Vib.
,
2020
, pp.
1
10
.10.1155/2020/8872401
7.
Xie
,
W.
,
Liu
,
C.
,
Huang
,
G.
, and
Jiang
,
D.
,
2022
, “
Numerical and Experimental Study on Rod-Fastened Rotor Dynamics Using Semi-Analytical Elastic-Plastic Model
,”
ASME J. Eng. Gas Turbines Power
,
144
(
6
), p.
064501
.10.1115/1.4053780
8.
Du
,
B.
,
Qin
,
Z.
,
Lu
,
Q.
,
Wang
,
B.
, and
Li
,
C.
,
2022
, “
Dynamic Modeling of Tie-Bolt Rotors Via Fractal Contact Theory and Virtual Material Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
236
(
11
), pp.
5900
5915
.10.1177/09544062211064967
9.
Xu
,
H.
,
Yang
,
L.
, and
Xu
,
T.
,
2021
, “
Dynamic Analysis of the Rod-Fastened Rotor Considering the Characteristics of Circumferential Tie Rods
,”
Appl. Sci.
,
11
(
9
), p.
3829
.10.3390/app11093829
10.
Liu
,
X.
,
Yuan
,
Q.
,
Liu
,
Y.
, and
Gao
,
J.
,
2014
, “
Analysis of the Stiffness of Hirth Couplings in Rod-Fastened Rotors Based on Experimental Modal Parameter Identification
,”
ASME
Paper No. GT2014-26448.10.1115/GT2014-26448
11.
Zhang
,
Y.
,
Du
,
Z.
,
Shi
,
L.
, and
Liu
,
S.
,
2010
, “
Determination of Contact Stiffness of Rod-Fastened Rotors Based on Modal Test and Finite Element Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
094501
.10.1115/1.4000591
12.
Greenwood
,
J. A.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A: Math. Phys. Sci.
,
295
(
1442
), pp.
300
319
.10.1098/rspa.1966.0242
13.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.10.1115/1.3261348
14.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.10.1115/1.1490373
15.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.10.1115/1.1866166
16.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.10.1115/1.2920588
17.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
ASME J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
.10.1063/1.368536
18.
Morag
,
Y.
, and
Etsion
,
I.
,
2007
, “
Resolving the Contradiction of Asperities Plastic to Elastic Mode Transition in Current Contact Models of Fractal Rough Surfaces
,”
Wear
,
262
(
5–6
), pp.
624
629
.10.1016/j.wear.2006.07.007
19.
Pohrt
,
R.
,
Popov
,
V. L.
, and
Filippov
,
A. E.
,
2012
, “
Normal Contact Stiffness of Elastic Solids With Fractal Rough Surfaces for One-and Three-Dimensional Systems
,”
Phys. Rev. E
,
86
(
2
), p.
026710
.10.1103/PhysRevE.86.026710
20.
Wang
,
R.
,
Zhu
,
L.
, and
Zhu
,
C.
,
2017
, “
Research on Fractal Model of Normal Contact Stiffness for Mechanical Joint Considering Asperity Interaction
,”
Int. J. Mech. Sci.
,
134
, pp.
357
369
.10.1016/j.ijmecsci.2017.10.019
21.
Zhang
,
D.
,
Xia
,
Y.
,
Scarpa
,
F.
,
Hong
,
J.
, and
Ma
,
Y.
,
2017
, “
Interfacial Contact Stiffness of Fractal Rough Surfaces
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
.10.1038/s41598-017-13314-2
22.
Liu
,
P.
,
Zhao
,
H.
,
Huang
,
K.
, and
Chen
,
Q.
,
2015
, “
Research on Normal Contact Stiffness of Rough Surface Considering Friction Based on Fractal Theory
,”
Appl. Surf. Sci.
,
349
, pp.
43
48
.10.1016/j.apsusc.2015.04.174
23.
Wang
,
Y.
,
Zhang
,
X.
,
Wen
,
S.
, and
Chen
,
Y.
,
2019
, “
Fractal Loading Model of the Joint Interface Considering Strain Hardening of Materials
,”
Adv. Mater. Sci. Eng.
,
2019
, pp.
1
14
.10.1155/2019/2108162
24.
Yin
,
Z.
,
Ou
,
Y.
,
Li
,
Y.
, and
Mei
,
Q.
,
1994
, “
A Dynamic Characteristic Analysis for Axially Prestressed Rotor Systems With Curvic Couplings
,”
J. Aerosp. Power
,
9
(
2
), pp.
133
–13
6
(in Chinese).
25.
Richardson
,
I. J.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Taylor
,
J. W.
,
2002
, “
A Validation of the Three-Dimensional Finite Element Contact Method for Use With Curvic Couplings
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
216
(
2
), pp.
63
75
.10.1243/095441002760179771
26.
Yuan
,
S.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Jiang
,
X.
,
2010
, “
Stress Distribution and Contact Status Analysis of a Bolted Rotor With Curvic Couplings
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
224
(
9
), pp.
1815
1829
.10.1243/09544062JMES1853
27.
Shen
,
X.
, and
Cao
,
P.
,
2017
, “
Contact State Analysis of Turboshaft Engine Rotor With Curvic Coupling Joint Structure
,”
Aeroengine
,
43
(
4
), pp.
35
40
(in Chinese).
28.
Yu
,
Y.
,
Lee
,
B.
, and
Cho
,
Y.
,
2019
, “
Analysis of Contact and Bending Stiffness for Curvic Couplings Considering Contact Angle and Surface Roughness
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
233
(
6
), pp.
1257
1267
.10.1177/0954408919861609
29.
Wang
,
L.
,
Wang
,
A.
,
Jin
,
M.
,
Huang
,
Q.
, and
Yin
,
Y.
,
2020
, “
Nonlinear Effects of Induced Unbalance in the Rod Fastening Rotor-Bearing System Considering Nonlinear Contact
,”
Arch. Appl. Mech.
,
90
(
5
), pp.
917
943
.10.1007/s00419-019-01645-7
30.
Jin
,
M.
,
Wang
,
A.
,
Wang
,
Q.
, and
Wang
,
L.
,
2023
, “
Rub-Impact Dynamic Analysis of the Central Tie Rod Rotor-Blade-Casing Coupling System With the Hirth Couplings Connection
,”
J. Vib. Eng. Technol.
,
12
(
2
), pp.
1479
1503
.10.1007/s42417-023-00921-9
31.
Zhang
,
D.
,
Yang
,
C.
,
He
,
T.
,
Liu
,
J.
, and
Hong
,
J.
,
2021
, “
Modelling and Stress Analysis for Double-Row Curvic Couplings
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
235
(
19
), pp.
4231
4243
.10.1177/0954406220974051
32.
Liu
,
D.
,
Zhou
,
L.
,
Zhang
,
D.
, and
Wang
,
H.
,
2023
, “
Modeling and Dynamic Analysis for Rotors With Curvic-Coupling Looseness
,”
J. Vib. Control
,
29
(
9–10
), pp.
1996
2009
.10.1177/10775463221074481
33.
Kim
,
B. J.
,
Oh
,
J.
, and
Palazzolo
,
A.
,
2022
, “
Test and Theory for a Refined Structural Model of a Hirth Coupling
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031027
.10.1115/1.4052088
34.
Kim
,
B. J.
,
Oh
,
J.
, and
Palazzolo
,
A.
,
2023
, “
An Improved Preloaded Curvic Coupling Model for Rotordynamic Analyses
,”
J. Sound Vib.
,
544
, p.
117391
.10.1016/j.jsv.2022.117391
35.
Croccolo
,
D.
,
De Agostinis
,
M.
,
Fini
,
S.
,
Olmi
,
G.
,
Robusto
,
F.
, and
Vincenzi
,
N.
,
2018
, “
On Hirth Ring Couplings: Design Principles Including the Effect of Friction
,”
Actuators
,
7
(
4
), p.
79
.10.3390/act7040079
36.
Jiang
,
S.
,
Zheng
,
Y.
, and
Zhu
,
H.
,
2010
, “
A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory
,”
ASME J. Tribol.
,
132
(
1
), p.
011401
.10.1115/1.4000305
37.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.10.1115/1.3261575
You do not currently have access to this content.