Abstract

In this work, the effects of replacing an atomizer component of a confined jet-stabilized gas turbine combustor with a three-dimensional (3D)-printed part have been studied. The part is called airblast, and it serves as a wall that collects and flows liquid droplets for a secondary atomization. Therefore, the liquid–surface interaction on the rough surface of the 3D-printed part was of interest. The combustor was operated under various conditions with either a conventionally machined airblast or the 3D-printed airblast. Flames with two liquid fuels were studied for fuel flexibility, and the position of a primary fuel injection was varied to study the influence of the liquid-surface interaction length. Load flexibility was investigated with air jet velocity settings, and flame equivalence ratios of ϕ = 0.8 and 1.0 were tested. Shadowgraphy-based particle tracking analyses presented a reduced atomization performance with the 3D-printed airblast, showing large droplet size distributions. However, no significant change in the combustor performance was observed from OH* chemiluminescence images and emission data, which confirms the versatility of the combustor and assures the compatibility of 3D-printed components with the combustor of this study.

References

1.
Samitha Weerakoon
,
A. H.
, and
Assadi
,
M.
,
2023
, “
Trends and Advances in Micro Gas Turbine Technology for Sustainable Energy Solutions: A Detailed Review
,”
Energy Convers. Manage.: X
,
20
, p.
100483
.10.1016/j.ecmx.2023.100483
2.
Enagi
,
I. I.
,
Al-Attab
,
K. A.
,
Zainal
,
Z. A.
, and
Teoh
,
Y. H.
,
2022
, “
Palm Biodiesel Spray and Combustion Characteristics in a New Micro Gas Turbine Combustion Chamber Design
,”
Energy
,
254
, p.
124335
.10.1016/j.energy.2022.124335
3.
Hampp
,
F.
,
Schäfer
,
D.
, and
Lammel
,
O.
,
2023
, “
Spray Flame Characterization of a Dual Injector for Compact Combustion Systems
,”
Combust. Sci. Technol.
, pp.
1
34
.10.1080/00102202.2023.2249222
4.
Giuliani
,
F.
,
Paulitsch
,
N.
,
Cozzi
,
D.
,
Görtler
,
M.
, and
Andracher
,
L.
,
2018
, “
An Assessment on the Benefits of Additive Manufacturing Regarding New Swirler Geometries for Gas Turbine Burners
,”
ASME
Paper No. GT2018-75165.10.1115/GT2018-75165
5.
Novotny
,
V.
,
Spale
,
J.
,
Bryksi
,
Stunova
,
B.
,
Kolovratnik
,
M.
,
Vitvarova
,
M.
, and
Zikmund
,
P.
,
2019
, “
3D Printing in Turbomachinery: Overview of Technologies, Applications and Possibilities for Industry 4.0
,”
ASME
Paper No. GT2019-91849.10.1115/GT2019-91849
6.
Dahmen
,
T.
,
2021
, “
Additive Manufacturing for Fuel Injectors: Design, Processes and Materials
,”
Ph.D. thesis
,
Technical University of Denmark
,
Kgs. Lyngby, Denmark
.10.13140/RG.2.2.21672.85762
7.
Sanchez
,
F.
,
Corber
,
A.
, and
Barbacki
,
M.
,
2018
, “
Assessment of Spray Particle Size on Holes Created Through Additive Manufacturing Methods (SLM) vs Conventionally Drilled
,”
Proc. GPPS Forum
, Montreal, QC, Canada, May 7–9.https://www.researchgate.net/publication/365610228_ASSESSMENT_OF_SPRAY_PARTICLE_SIZE_ON_HOLES_CREATED_THROUGH_ADDITIVE_MANUFACTURING_METHODS_SLM_VS_CONVENTIONALLY_DRILLED
8.
Wang
,
Z.
,
Fan
,
W.
,
Shi
,
H.
,
Shi
,
P.
, and
Don
,
R.
,
2022
, “
Study of Atomization Characteristics of Air Atomizing Nozzles for Additive Manufacturing
,”
J. Phys.: Conf. Ser.
,
2228
(
1
), p.
012032
.10.1088/1742-6596/2228/1/012032
9.
Cejpek
,
O.
,
Malý
,
M.
,
Bělka
,
M.
, and
Jedelský
,
J.
,
2020
, “
Replication of Pressure Swirl Atomizer by 3D Printing and Influence of Surface Roughness on the Atomization Quality
,”
MATEC Web Conf.
,
328
, p.
01007
.10.1051/matecconf/202032801007
10.
Jedelský
,
J.
,
Malý
,
M.
,
Bělka
,
M.
,
Polzer
,
A.
,
Sámelová
,
V.
,
Cejpek
,
O.
, and
Wigley
,
G.
,
2023
, “
Effect of Fabrication Method and Surface Roughness on Spray Characteristics for Small Pressure-Swirl Atomizers
,”
J. Manuf. Processes
,
85
, pp.
166
178
.10.1016/j.jmapro.2022.11.031
11.
Crayford
,
A. P.
,
Lacan
,
F.
,
Runyon
,
J.
,
Bowen
,
P. J.
,
Balwadkar
,
S.
,
Harper
,
J.
, and
Pugh
,
D. G.
,
2019
, “
Manufacture, Characterization and Stability Limits of an AM Prefilming Air-Blast Atomizer
,”
ASME
Paper No. GT2019-91624.10.1115/GT2019-91624
12.
Lammel
,
O.
,
Stöhr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2012
, “
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041506
.10.1115/1.4004733
13.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
, 2nd ed.,
CRC Press
, Boca Raton, FL.
14.
Allan
,
D. B.
,
Caswell
,
T.
,
Keim
,
N. C.
,
van der Wel
,
C. M.
, and
Verweij
,
R. W.
,
2023
, Trackpy v0.6.1, Zenodo.
15.
Crocker
,
J. C.
, and
Grier
,
D. G.
,
1996
, “
Methods of Digital Video Microscopy for Colloidal Studies
,”
J. Colloid Interface Sci.
,
179
(
1
), pp.
298
310
.10.1006/jcis.1996.0217
16.
Pavri
,
R.
, and
Moore
,
G. D.
,
2001
, “
Gas Turbine Emissions and Control
,” GE Energy Services, Atlanta, GA, General Electric Report No.
GER-4211
.https://www.gevernova.com/content/dam/gepower-new/global/en_US/downloads/gas-new-site/resources/reference/ger-4211-gas-turbine-emissions-and-control.pdf
You do not currently have access to this content.