Abstract

In high-speed flows, a single droplet undergoes fragmentation, yielding numerous child droplets. Conventional breakup models usually group these droplets into a single parcel, neglecting the postbreakup spatial distribution. To address this limitation, detailed numerical simulations have been conducted focusing on the bag and bag–stamen breakup modes of 200 μm-diameter droplet at Weber numbers of 15 and 30. The result shows that the largest length of the child-droplets cloud can reach up to 29 times the original diameter. Importantly, if the grid size is less than 29 times the droplet diameter, traditional models that use a single parcel for child droplets could produce inaccurate results. To overcome this limitation, a disk-like breakup (DLB) model was introduced. With this model, multiple parcels replace the original droplet and are initialized on a virtual disk. Additionally, partitioned breakup modeling was employed for both bag and bag–stamen breakups. Calculations using the DLB model were compared with the Taylor analogy breakup (TAB), Kelvin–Helmholtz Rayleigh–Taylor (KH–RT), and enhanced Taylor analogy breakup (ETAB) models. The result indicates that the DLB model is capable of simulating the spatial distribution of the droplet cloud postbreakup, achieving better agreement with the detailed numerical simulations using the volume of fluid (VOF) method in this paper and experiments in the literature.

References

1.
Apte
,
S.
,
Gorokhovski
,
M.
, and
Moin
,
P.
,
2003
, “
LES of Atomizing Spray With Stochastic Modeling of Secondary Breakup
,”
Int. J. Multiphase Flow
,
29
(
9
), pp.
1503
1522
.10.1016/S0301-9322(03)00111-3
2.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
3.
Jain
,
M.
,
Prakash
,
R. S.
,
Tomar
,
G.
, and
Ravikrishna
,
R.
,
2015
, “
Secondary Breakup of a Drop at Moderate Weber Numbers
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
471
(
2177
), p.
20140930
.10.1098/rspa.2014.0930
4.
Chowdhary
,
S.
,
Reddy
,
S. R.
, and
Banerjee
,
R.
,
2020
, “
Detailed Numerical Simulations of Unequal Sized Off-Centre Binary Droplet Collisions
,”
Int. J. Multiphase Flow
,
128
, p.
103267
.10.1016/j.ijmultiphaseflow.2020.103267
5.
Lain
,
S.
, and
Sommerfeld
,
M.
,
2020
, “
Influence of Droplet Collision Modelling in Euler/Lagrange Calculations of Spray Evolution
,”
Int. J. Multiphase Flow
,
132
, p.
103392
.10.1016/j.ijmultiphaseflow.2020.103392
6.
Faeth
,
G.
,
1996
, “
Spray Combustion Phenomena
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
1593
1612
.10.1016/S0082-0784(96)80383-3
7.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Paper No. 872089.10.4271/872089
8.
Park
,
J.-H.
,
Yoon
,
Y.
, and
Hwang
,
S.-S.
,
2002
, “
Improved TAB Model for Prediction of Spray Droplet Deformation and Breakup
,”
Atomization Sprays
,
12
(
4
), pp.
387
401
.10.1615/AtomizSpr.v12.i4.20
9.
Stefanitsis
,
D.
,
Strotos
,
G.
,
Nikolopoulos
,
N.
,
Kakaras
,
E.
, and
Gavaises
,
M.
,
2019
, “
Improved Droplet Breakup Models for Spray Applications
,”
Int. J. Heat Fluid Flow
,
76
, pp.
274
286
.10.1016/j.ijheatfluidflow.2019.02.010
10.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
11.
Reitz
,
R.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
(
4
), pp.
309
337
.https://uwmadison.box.com/v/AandS
12.
Yoo
,
Y.-L.
,
Han
,
D.-H.
,
Hong
,
J.-S.
, and
Sung
,
H.-G.
,
2017
, “
A Large Eddy Simulation of the Breakup and Atomization of a Liquid Jet Into a Cross Turbulent Flow at Various Spray Conditions
,”
Int. J. Heat Mass Transfer
,
112
, pp.
97
112
.10.1016/j.ijheatmasstransfer.2017.04.064
13.
Li
,
Z.-H.
,
He
,
B.-Q.
, and
Zhao
,
H.
,
2014
, “
Application of a Hybrid Breakup Model for the Spray Simulation of a Multi-Hole Injector Used for a DISI Gasoline Engine
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
282
292
.10.1016/j.applthermaleng.2013.12.063
14.
Nicholls
,
J. A.
, and
Ranger
,
A.
,
1969
, “
Aerodynamic Shattering of Liquid Drops
,”
AIAA J.
,
7
(
2
), pp.
285
290
.10.2514/3.5087
15.
Peng
,
C.
,
Tong
,
L.
, and
Cao
,
X.
,
2015
, “
A Hydrodynamic Fragmentation Model Based on Boundary Layer Stripping
,”
Ann. Nucl. Energy
,
80
, pp.
95
100
.10.1016/j.anucene.2015.01.034
16.
Poplavski
,
S.
,
2022
, “
Parametric Study of Droplet Breakup Behind a Shock Wave by the Sheet Striping Mechanism
,”
J. Appl. Mech. Tech. Phys.
,
63
(
3
), pp.
408
417
.10.1134/S0021894422030051
17.
Karimi
,
M.
, and
Andersson
,
R.
,
2020
, “
Stochastic Simulation of Droplet Breakup in Turbulence
,”
Chem. Eng. J.
,
380
, p.
122502
.10.1016/j.cej.2019.122502
18.
Chou
,
W.-H.
, and
Faeth
,
G.
,
1998
, “
Temporal Properties of Secondary Drop Breakup in the Bag Breakup Regime
,”
Int. J. Multiphase Flow
,
24
(
6
), pp.
889
912
.10.1016/S0301-9322(98)00015-9
19.
Yang
,
W.
,
Jia
,
M.
,
Che
,
Z.
,
Sun
,
K.
, and
Wang
,
T.
,
2017
, “
Transitions of Deformation to Bag Breakup and Bag to Bag-Stamen Breakup for Droplets Subjected to a Continuous Gas Flow
,”
Int. J. Heat Mass Transfer
,
111
, pp.
884
894
.10.1016/j.ijheatmasstransfer.2017.04.012
20.
Xu
,
Z.
,
Wang
,
T.
, and
Che
,
Z.
,
2022
, “
Droplet Breakup in Airflow With Strong Shear Effect
,”
J. Fluid Mech.
,
941
, p.
A54
.10.1017/jfm.2022.326
21.
Strotos
,
G.
,
Malgarinos
,
I.
,
Nikolopoulos
,
N.
, and
Gavaises
,
M.
,
2016
, “
Predicting Droplet Deformation and Breakup for Moderate Weber Numbers
,”
Int. J. Multiphase Flow
,
85
, pp.
96
109
.10.1016/j.ijmultiphaseflow.2016.06.001
22.
Jackiw
,
I. M.
, and
Ashgriz
,
N.
,
2022
, “
Prediction of the Droplet Size Distribution in Aerodynamic Droplet Breakup
,”
J. Fluid Mech.
,
940
, p.
A17
.10.1017/jfm.2022.249
23.
Cao
,
M.-H.
,
Jiang
,
H.-K.
, and
Chin
,
J.-S.
,
1982
, “
Semiempirical Analysis of Liquid Fuel Distribution Downstream of a Plain Orifice Injector Under Cross-Stream Air Flow
,”
ASME J. Eng. Gas Turbines Power
,
104
(
4
), pp.
789
795
.10.1115/1.3227345
24.
Joshi
,
S.
, and
Anand
,
T.
,
2022
, “
Droplet Deformation in Secondary Breakup: Transformation From a Sphere to a Disk-Like Structure
,”
Int. J. Multiphase Flow
,
146
, p.
103850
.10.1016/j.ijmultiphaseflow.2021.103850
25.
Boggavarapu
,
P.
,
Ramesh
,
S. P.
,
Avulapati
,
M. M.
, and
Ravikrishna
,
R.
,
2021
, “
Secondary Breakup of Water and Surrogate Fuels: Breakup Modes and Resultant Droplet Sizes
,”
Int. J. Multiphase Flow
,
145
, p.
103816
.10.1016/j.ijmultiphaseflow.2021.103816
26.
Zhao
,
H.
,
Liu
,
H.-F.
,
Xu
,
J.-L.
,
Li
,
W.-F.
, and
Lin
,
K.-F.
,
2013
, “
Temporal Properties of Secondary Drop Breakup in the Bag-Stamen Breakup Regime
,”
Phys. Fluids
,
25
(
5
), p.
054102
.10.1063/1.4803154
27.
Tavangar
,
S.
,
Hashemabadi
,
S. H.
, and
Saberimoghadam
,
A.
,
2015
, “
CFD Simulation for Secondary Breakup of Coal–Water Slurry Drops Using OpenFOAM
,”
Fuel Process. Technol.
,
132
, pp.
153
163
.10.1016/j.fuproc.2014.12.037
28.
Jasak
,
H.
,
2009
, “
OpenFOAM: Open Source CFD in Research and Industry
,”
Int. J. Nav. Archit. Ocean Eng.
,
1
(
2
), pp.
89
94
.10.2478/IJNAOE-2013-0011
29.
Schiller
,
L.
, and
Naumann
,
Z.
,
1933
, “
A Drag Coefficient Correlation
,”
Z. Ver. Dtsch. Ing.
,
77
, pp.
318
320
.https://cir.nii.ac.jp/crid/1571417125743846016
30.
Bhandarkar
,
A.
,
Manna
,
P.
, and
Chakraborty
,
D.
,
2017
, “
Assessment of Droplet Breakup Models in High-Speed Cross-Flow
,”
Atomization Sprays
,
27
(
1
), pp.
61
79
.10.1615/AtomizSpr.2016015409
31.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
32.
Woelke
,
M.
,
2007
, “
Eddy Viscosity Turbulence Models Employed by Computational Fluid Dynamic
,”
Pr. Inst. Lotnictwa
, 4(191), pp.
92
113
.https://bibliotekanauki.pl/articles/213054
33.
Pendar
,
M.-R.
, and
Roohi
,
E.
,
2018
, “
Cavitation Characteristics Around a Sphere: An LES Investigation
,”
Int. J. Multiphase Flow
,
98
, pp.
1
23
.10.1016/j.ijmultiphaseflow.2017.08.013
34.
Liu
,
H.
,
Zhang
,
W.
,
Jia
,
M.
,
Yan
,
Y.
, and
He
,
Y.
,
2018
, “
An Improved Method for Coupling the In-Nozzle Cavitation With Multi-Fluid-Quasi-VOF Model for Diesel Spray
,”
Comput. Fluids
,
177
, pp.
20
32
.10.1016/j.compfluid.2018.09.017
35.
Zhao
,
H.
,
Liu
,
H.-F.
,
Li
,
W.-F.
, and
Xu
,
J.-L.
,
2010
, “
Morphological Classification of Low Viscosity Drop Bag Breakup in a Continuous Air Jet Stream
,”
Phys. Fluids
,
22
(
11
), p.
114103
.10.1063/1.3490408
You do not currently have access to this content.