Abstract

This work supports the development of a low NOx emission 65 kW natural gas turbine capable of operating on 100% hydrogen. This gas turbine has been demonstrated to operate from cold start to full load on up to 30% hydrogen mixed into natural gas with single digit ppm NOx emissions. To reach operation on 100% hydrogen, injectors specifically designed to (1) avoid challenges with flashback and (2) be field retrofittable were developed and tested. The injectors must be designed to prevent flashback while having a high degree of mixing coupled with fuel lean operation to achieve desired low NOx emissions. Successful operation of the engine from cold start to full load on 100% hydrogen was demonstrated. With the successful demonstration of operability, the new injectors serve as a starting point to improve the turbine performance and emissions when operated on hydrogen. To support the development, a chemical reactor network (CRN) is used in conjunction with experimental injector mixing characterization. The CRN analysis predicts NOx using perfectly stirred reactors (PSR). A strategy to account for variation in mixing performance was developed and utilized with the CRN to connect NOx emissions to the injector mixing performance. Fuel concentration profiles produced by different injector designs were measured and the CRN model was used to infer the effects on NOx emission. The CRN model was validated/tuned using measured NOx emissions data from two combustion liners and two injector designs and the corresponding measured injector fuel distributions. The results illustrate how NOx emissions are directly influenced by local fuel rich regions found at the injector outlet. The CRN model can thus be used to screen injector designs and infer NOx performance and will be used to guide the development of injectors for hydrogen that can attain desired fuel distributions, concentrations, and velocities. The results affirm the direction needed to attain improved mixing and to operate at overall leaner conditions made possible by the stabilizing features inherent to hydrogen..

References

1.
Flores
,
R. J.
,
Shaffer
,
B. P.
, and
Brouwer
,
J.
,
2014
, “
Dynamic Distributed Generation Dispatch Strategy for Lowering the Cost of Building Energy
,”
Appl. Energy
,
123
, pp.
196
208
.10.1016/j.apenergy.2014.02.028
2.
Rist
,
J. F.
,
Dias
,
M. F.
,
Palman
,
M.
,
Zelazo
,
D.
, and
Cukurel
,
B.
,
2017
, “
Economic Dispatch of a Single Micro-Gas Turbine Under CHP Operation
,”
Appl. Energy
,
200
, pp.
1
18
.10.1016/j.apenergy.2017.05.064
3.
Kim
,
M. J.
,
Kim
,
T. S.
,
Flores
,
R. J.
, and
Brouwer
,
J.
,
2020
, “
Neural-Network Based Optimization for Economic Dispatch of Combined Heat and Power Systems
,”
Appl. Energy
,
265
, p.
114785
.10.1016/j.apenergy.2020.114785
4.
Samitha Weerakoon
,
A. H.
, and
Assadi
,
M.
,
2023
, “
Trends and Advances in Micro Gas Turbine Technology for Sustainable Energy Solutions
,”
Energy Convers. Manage.: X
,
20
, p.
100483
.10.1016/j.ecmx.2023.100483
5.
di Gaeta
,
A.
,
Reale
,
F.
,
Chiariello
,
F.
, and
Massoli
,
P.
,
2017
, “
A Dynamic Model of a 100 kW Micro Gas Turbine Fuelled With Natural Gas and Hydrogen Blends and Its Application in a Hybrid Energy Grid
,”
Energy
,
129
, pp.
299
320
.10.1016/j.energy.2017.03.173
6.
Flores
,
R. J.
, and
Brouwer
,
J.
,
2018
, “
Optimal Design of a Distributed Energy Resource System That Economically Reduces Carbon Emissions
,”
Appl. Energy
,
232
, pp.
119
138
.10.1016/j.apenergy.2018.09.029
7.
Distributed Generation Certification Program,
2023
, “
Current Distributed Generation Executive Orders
,” California Air Resources Board, Sacramento, CA, accessed Nov. 14, 2023, https://ww2.arb.ca.gov/our-work/programs/dgcert/exec-orders
8.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
9.
Beerer
,
D.
, and
McDonell
,
V.
,
2008
, “
Autoignition of Hydrogen and Air in a Continuous Flow Reactor With Application to Lean Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051507
.10.1115/1.2939007
10.
Kalantari
,
A.
, and
McDonell
,
V.
,
2017
, “
Boundary Layer Flashback of Non-Swirling Premixed Reactions: Mechanisms, Fundamental Research and Recent Advances
,”
Prog. Energy Combust. Sci.
,
189
(
12
), pp.
2115
2134
.10.1016/j.pecs.2017.03.001
11.
Cadorin
,
M.
,
Pinelli
,
M.
,
Vaccari
,
A.
,
Calabria
,
R.
,
Chiarello
,
F.
,
Massoli
,
P.
, and
Bianchi
,
E.
,
2012
, “
Analysis of a Micro Gas Turbine Fed by Natural Gas and Synthesis Gas: MGT Test Bench and Combustor CFD Analysis
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
071401
.10.1115/1.4005977
12.
Cappelletti
,
A.
,
Martelli
,
F.
,
Bianchi
,
E.
, and
Trifoni
,
E.
,
2014
, “
Numerical Retrofit of 100 kW MGT Combustor for 100% H2 Fueling
,”
Energy Procedia
,
45
, pp.
1412
1421
.10.1016/j.egypro.2014.01.148
13.
Cappelletti
,
A.
, and
Martelli
,
F.
,
2017
, “
Investigation of a Pure Hydrogen Fueled Gas Turbine
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10513
10523
.10.1016/j.ijhydene.2017.02.104
14.
Di Nardo
,
A.
,
Bo
,
A.
,
Calchetti
,
G.
,
Giacomazzi
,
E.
, and
Messina
,
G.
,
2020
, “
Study on the Fuel Flexibility of a Microgas Turbine Combustor Burning Different Mixtures of H2, CH4, and CO2
,”
ASME J. Eng. Gas Turbines Power
,
142
(
6
), p.
061001
.10.1115/1.4046706
15.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Performance Analysis of the Micro Gas Turbine Turbec T100 With a New FLOX-Combustion System for Low Calorific Fuels
,”
Appl. Energy
,
159
, pp.
276
284
.10.1016/j.apenergy.2015.08.075
16.
Pappa
,
A.
,
Bricteux
,
L.
,
Benard
., and
P.
,
De Paepe
,
2021
, “
Can Water Dilution Avoid Flashback on a Hydrogen-Enriched Micro-Gas Turbine Combustion?: A Large Eddy Simulations Study
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041008
.10.1115/1.4049798
17.
Bauer
,
S.
,
Hampel
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
Operability Limits of Tubular Injectors With Vortex Generators for a Hydrogen-Fueled Recuperated 100 kW Class Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082607
.10.1115/1.4035842
18.
Zornek
,
T.
,
Mosbach
,
T.
, and
Aigner
,
M.
,
2019
, “
Optical Measurements of a Lower Calorific Values-Combustor Operated in a Micro Gas Turbine With Various Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041032
.10.1115/1.4040908
19.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1992
, “
Burners for Flameless Oxidation With Low NOx Formation Even at Maximum Air Preheat
,”
Gaswärme Int.
,
141
(
10
), pp.
438
444
.
20.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Ainger
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
121503
.10.1115/1.4001825
21.
Banihabib
,
R.
, and
Assadi
,
M.
,
2022
, “
Dynamic Modeling and Simulation of a 100 kW Micro Gas Turbine Running With Blended Methane/Hydrogen Fuel
,”
ASME
Paper No. GT-2022-81276.10.1115/GT-2022-81276
22.
Banihabib
,
R.
,
Lingstadt
,
T.
,
Wersland
,
M.
,
Kutne
,
P.
, and
Assadi
,
M.
,
2024
, “
Development and Testing of a 100 kW Fuel-Flexible Micro Gas Turbine Running on 100% Hydrogen
,”
Intl J. Hydrogen Energy
,
49
, pp.
92
111
.10.1016/j.ijhydene.2023.06.317
23.
Tanneberger
,
T.
,
Mundstock
,
J.
,
Rex
,
C.
,
Rosch
,
S.
, and
Paschereit
,
C. O.
,
2024
, “
Development of a Hydrogen Micro Gas Turbine Combustor: Atmospheric Pressure Testing
,”
ASME J. Eng. Gas Turbines Power
,
146
, p.
041013
.10.1115/1.4063708
24.
Capstone Green Energy
,
2024
, “
C65
,” Capstone Green Energy, Los Angeles, CA, accessed Mar. 30, 2024, https://www.capstonegreenenergy.com/products/capstone-microturbines/c65
25.
Therkelsen
,
P.
,
Wertz
,
T. J.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
,
2009
, “
Analysis of NOx Formation in a Hydrogen Fueled Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031507
.10.1115/1.3028232
26.
Brucker-Kalb
,
J.
,
Krosser
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Emissions Characteristics of a Premixed Cyclic-Periodical-Mixing Combustor Operated With Hydrogen-Natural Gas Fuel Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
021505
.10.1115/1.3124789
27.
Page
,
D.
,
Shaffer
,
B.
, and
McDonell
,
V. G.
,
2012
, “
Establishing Operating Limits in a Commercial Lean Premixed Combustor Operating on Synthesis Gas Pertaining to Flashback and Blowoff
,”
ASME
Paper No. GT2012-69355.10.1115/GT2012-69355
28.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2016
, “
Application of a Turbulent Jet Flame Flashback Propensity Model to a Commercial Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041506
.10.1115/1.4034649
29.
Villatoro
,
W.
,
Navarro
,
A.
,
McDonell
,
V.
, and
Hu
,
R.
,
2024
, “
Evaluation of a Commercial 65 kW Recuperated Gas Turbine Engine Operated on Up to 30% Hydrogen Added to Natural Gas
,”
ASME
Paper No. GT-2024-128007.10.1115/GT-2024-128007
30.
Villatoro
,
W.
,
McDonell
,
V.
,
Hu
,
R.
, and
Ayers
,
D.
,
2022
, “
Evaluation of the Performance of a 200 kW Recuperated Gas Turbine Engine Operated on Up to 30% Hydrogen Added to Natural Gas
,”
ASME
Paper No. GT2022-81643.10.1115/GT2022-81643
31.
Captone Green Energy
,
2023
, “
Hydrogen Microturbine
,” Capstone Green Energy, Los Angeles, CA, accessed Dec. 20, 2023, https://www.capstonegreenenergy.com/products/hydrogen-products/hydrogen-microturbine
32.
Lyons
,
V.
,
1982
, “
Fuel/Air Nonuniformity—Effect on Nitric Oxide Emissions
,”
AIAA J.
,
20
(
5
), pp.
660
665
.10.2514/3.51124
33.
Fric
,
T. F.
,
1992
, “
Effect of Fuel-Air Unmixedness on NOx Emissions
,”
AIAA J. Prop. Power
,
9
(
5
), pp.
708
718
.10.2514/3.23679
34.
Leonard
,
G.
, and
Stegmaier
,
J.
,
1993
, “
Development of an Aeroderivative Gas Turbine Dry Low Emission Combustion System
,”
ASME J. Eng. Gas Turbine Power
,
116
(
3
), pp.
542
546
.10.1115/1.2906853
35.
Douglas
,
C. M.
,
Shaw
,
S. L.
,
Martz
,
T. D.
,
Steele
,
R. C.
,
Noble
,
D.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2022
, “
Pollutant Emissions Reporting and Performance Considerations for Hydrogen-Hydrocarbon Fuels in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091003
.10.1115/1.4054949
36.
McDonell
,
V. G.
,
2016
, “
Lean Combustion in Gas Turbines
,”
In Lean Combustion—Technology and Control
, 2nd ed.,
D.
Dunn-Rankin, ed.
,
Academic Press
,
San Diego, CA
.
37.
Chen
,
J.
,
Mitchell
,
M.
,
Nourse
,
J.
, and
McKeirnan
,
R.
,
2016
, “
Flashback-Reducing Fuel Injector
,” International Patent No. WO 2016/018483 A1.
38.
Kalantari
,
A.
,
McDonell
,
V.
,
Samuelsen
,
S.
,
Farhangi
,
S.
, and
Ayers
,
D.
,
2018
, “
Towards Improved Boundary Layer Flashback Resistance of a 65 kw Gas Turbine With Retrofittable Injector Concept
,”
ASME
Paper No. GT2018-75834.10.1115/GT2018-75834
39.
Phi
,
V. M.
,
Mauzey
,
J. L.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
,
2004
, “
Fuel Injection and Emissions Characteristics of a Commercial Microturbine Generator
,”
ASME
Paper No. GT-2004-54039.10.1115/GT-2004-54039
40.
HORIBA, 2024, “
PG-350E Portable Gas Analyzer—HORIBA
,” accessed June 10, 2024, https://www.horiba.com/it/process-environmental/products/combustion/transportable/details/pg-350e-portable-gas-analyzer-19617
41.
Jahnke
,
J. A.
,
1993
,
Continuous Emissions Monitoring
,
Van Nostrand and Reinhold
,
New York
.
42.
Colorado
,
A. F.
, and
McDonell
,
V. G.
,
2014
, “
Reactor Network Analysis to Assess Fuel Composition Effects on NOx Emissions From a Recuperated Gas Turbine
,”
ASME
Paper No. GT2014-26361.10.1115/GT2014-26361
43.
Hernandez
,
S.
,
Wang
,
Q.
,
McDonell
,
V.
,
Mansour
,
A.
,
Steinthorsson
, and
Hollon
,
B.
,
2008
, “
Micro-Mixing Fuel Injectors for Low Emissions Hydrogen Combustion
,”
ASME
Paper No. GT2008-50854.10.1115/GT2008-50854
44.
Faldella
,
F.
,
Eisenring
,
S.
,
Kim
,
T.
,
Doll
,
U.
, and
Jahnson
,
P.
,
2023
, “
Turbulent Flame Speed and Flame Characteristics of Lean Premixed H2-CH4 Flames at Moderate Pressure Levels
,”
ASME
Paper No. GT2023-102527.10.1115/GT2023-102527
45.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
T.
,
Hanson
,
R. K.
,
Song
,
S.
, et al., 2024, “
GRI-MECH 3.0 Detailed Mechanism
,” accessed Sept. 20, 2024, http://combustion.berkeley.edu/gri-mech/version30/text30.html
46.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NOx Kinetic Mechanism Using Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.10.1016/j.combustflame.2017.03.019
47.
Coppens
,
F. H. V.
,
De Ruyck
,
J.
, and
Konnov
,
A. A.
,
2007
, “
The Effects of Composition on Burning Velocity and Nitric Oxide Formation in Laminar Premixed Flames of CH4 + H2 + O2 + N2
,”
Combust. Flame
,
149
(
4
), pp.
409
417
.10.1016/j.combustflame.2007.02.004
48.
UC San Diego Combustion Research Group
,
2024
, “
Chemical Mechanism: Combustion Research Group at UC San Diego
,” UC San Diego Combustion Research Group, San Diego, CA, accessed Sept. 16, 2024, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
49.
Zhou
,
C.-W.
,
Li
,
Y.
,
Burke
,
U.
,
Banyon
,
C.
,
Somers
,
K. P.
,
Ding
,
S.
,
Khan
,
S.
,
Hargis
,
J. W.
,
Sikes
,
T.
, et al.,
2018
, “
An Experimental and Chemical Kinetic Modeling Study of 1,3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements
,”
Combust. Flame
,
197
, pp.
423
438
.10.1016/j.combustflame.2018.08.006
50.
Wang
,
K.
,
Xu
,
R.
,
Parise
,
T.
,
Shao
,
J.
,
Movaghar
,
A.
,
Lee
,
D. J.
,
Park
,
J.-W.
,
Gao
,
Y.
,
Lu
,
T.
, et al.,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion chemistry - IV. HyChem Modeling of Combustion Kinetics of a Bio-Derived Jet Fuel and Its Blends With a Conventional Jet A
,”
Combust. Flame
,
198
, pp.
477
489
.10.1016/j.combustflame.2018.07.012
You do not currently have access to this content.