Abstract

Hydrogen-compatible gas turbines are one way to decarbonize electricity production. However, burning and handling hydrogen is not trivial because of its high reactivity and tendency to detonate. Mandatory safety parameters, such as auto-ignition delay times, can be estimated thanks to predictive detailed kinetic models, but with significant calculation times that limit coupling with fluid mechanic codes. An auto-ignition prediction tool was developed based on an artificial intelligence (AI) model for fast computations and an implementation into an explosion model. A dataset of ignition delay times (IDTs) was generated automatically using a recent detailed kinetic model from National University of Galway (NUIG) selected from the literature. Generated data cover a wide operating range and different compositions of fuels. Clustering problems in sample points were avoided by a quasi-random Sobol sequence, which covers uniformly the entire input parameter space. The different algorithms were trained, cross-validated, and tested using a database of more than 70,000 ignitions cases of natural gas/hydrogen blends calculated with the full kinetic model by using a common split of 70/30 for training, testing. The AI model shows a high degree of robustness. For both the training and testing datasets, the average value of the correlation coefficient was above 99.91%, and the mean absolute error (MAE) and the mean square error (MSE) were around 0.03 and lower than 0.04, respectively. Tests showed the robustness of the AI model outside the ranges of pressure, temperature, and equivalence ratio of the dataset. A deterioration is, however, observed with increasing amounts of large alkanes in the natural gas.

References

1.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
2.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
3.
Nemitallah
,
M. A.
,
Haque
,
M. D. A.
,
Hussain
,
M.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2022
, “
Stratified and Hydrogen Combustion Techniques for Higher Turndown and Lower Emissions in Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
020801
.10.1115/1.4052541
4.
Molière
,
M.
,
2004
, “
Hydrogen Fueled Gas Turbines: Status and Prospects
,”
Second CAME-GT Conference
,
Bled, Slovania
.
5.
Campbell
,
A.
,
Goldmeer
,
J.
,
Healy
,
T.
,
Washam
,
R.
,
Molière
,
M.
, and
Citeno
,
J.
,
2009
, “
Heavy Duty Gas Turbines Fuel Flexibility
,”
ASME
Paper No. GT2008-51368.10.1115/GT2008-51368
6.
Chong
,
C. T.
,
Ng
,
J.-H.
,
Aris
,
M. S.
,
Mong
,
G. R.
,
Shahril
,
N.
,
Ting
,
S. T.
, and
Zulkifli
,
M. F.
,
2019
, “
Impact of Gas Composition Variations on Flame Blowout and Spectroscopic Characteristics of Lean Premixed Swirl Flames
,”
Process Saf. Environ. Protect.
,
128
, pp.
1
13
.10.1016/j.psep.2019.05.015
7.
Lu
,
M.
,
Li
,
D.
,
Xie
,
K.
,
Sun
,
G.
, and
Fu
,
Z.
,
2023
, “
Investigation of Flame Evolution and Stability Characteristics of H2-Enriched Natural Gas Fuel in an Industrial Gas Turbine Combustor
,”
Fuel
,
331
, p.
125938
.10.1016/j.fuel.2022.125938
8.
Pekalski
,
A. A.
,
Terli
,
E.
,
Zevenbergen
,
J. F.
,
Lemkowitz
,
S. M.
, and
Pasman
,
H. J.
,
2005
, “
Influence of the Ignition Delay Time on the Explosion Parameters of Hydrocarbon–Air–Oxygen Mixtures at Elevated Pressure and Temperature
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1933
1939
.10.1016/j.proci.2004.08.262
9.
Bounaceur
,
R.
,
Glaude
,
P.-A.
,
Sirjean
,
B.
,
Fournet
,
R.
,
Montagne
,
P.
,
Vierling
,
M.
, and
Molière
,
M.
,
2016
, “
Prediction of Auto-Ignition Temperatures and Delays for Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021505
.10.1115/1.4031264
10.
Strohle
,
J.
, and
Myhrvold
,
T.
,
2007
, “
An Evaluation of Detailed Reaction Mechanisms for Hydrogen Combustion Under Gas Turbine Conditions
,”
Int. J. Hydrog. Energy
,
32
(
1
), pp.
125
135
.10.1016/j.ijhydene.2006.04.005
11.
Sun
,
Y.
,
Zhang
,
Y.
,
Huang
,
M.
,
Li
,
Q.
,
Wang
,
W.
,
Zhao
,
D.
,
Cheng
,
S.
,
Deng
,
H.
,
Du
,
J.
,
Song
,
Y.
,
Li
,
H.
, and
Xu
,
H.
,
2022
, “
Effect of Hydrogen Addition on the Combustion and Emission Characteristics of Methane Under Gas Turbine Relevant Operating Condition
,”
Fuel
,
324
, p.
124707
.10.1016/j.fuel.2022.124707
12.
Carpio
,
J.
,
Li
,
B.
,
Fernández-Galisteo
,
D.
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2023
, “
Systematically Derived One-Step Kinetics for Hydrogen-Air Gas-Turbine Combustion
,”
Combust. Flame
,
250
, p.
112633
.10.1016/j.combustflame.2023.112633
13.
Elliott
,
L.
,
Ingham
,
D. B.
,
Kyne
,
A. G.
,
Mera
,
N. S.
,
Pourkashanian
,
M.
, and
Wilson
,
C. W.
,
2005
, “
The Use of Ignition Delay Time in Genetic Algorithms Optimisation of Chemical Kinetics Reaction Mechanisms
,”
Eng. Appl. Artif. Intell.
,
18
(
7
), pp.
825
831
.10.1016/j.engappai.2005.02.006
14.
Abbas
,
T.
,
Awais
,
M. M.
, and
Lockwood
,
F. C.
,
2003
, “
An Artificial Intelligence Treatment of Devolatilization for Pulverized Coal and Biomass in Co-Fired Flames
,”
Combust. Flame
,
132
(
3
), pp.
305
318
.10.1016/S0010-2180(02)00482-0
15.
Bhattacharya
,
A.
, and
Majumdar
,
P.
,
2023
, “
Artificial Intelligence-Machine Learning Algorithms for the Simulation of Combustion Thermal Analysis
,”
Heat Transf. Eng.
, epub.10.1080/01457632.2023.2178282
16.
Darwish Ahmad
,
A.
,
Akafuah
,
N. K.
,
Forthofer
,
J.
,
Fuchihata
,
M.
,
Hirasawa
,
T.
,
Kuwana
,
K.
,
Nakamura
,
Y.
,
Sekimoto
,
K.
,
Saito
,
K.
, and
Williams
,
F. A.
,
2023
, “
Large-Scale Fire Whirl and Forest Fire Disasters: Awareness, Implications, and the Need for Developing Preventative Methods
,”
Front. Mech. Eng.
,
9
, p.
1045542
.10.3389/fmech.2023.1045542
17.
Kuppa
,
K.
,
Goldmann
,
A.
, and
Dinkelacker
,
F.
,
2018
, “
Predicting Ignition Delay Times of C1-C3 Alkanes/Hydrogen Blends at Gas Engine Conditions
,”
Fuel
,
222
, pp.
859
869
.10.1016/j.fuel.2018.02.064
18.
Cui
,
Y.
,
Wang
,
Q.
,
Liu
,
H.
,
Zheng
,
Z.
,
Wang
,
H.
,
Yue
,
Z.
, and
Yao
,
M.
,
2020
, “
Development of the Ignition Delay Prediction Model of N-Butane/Hydrogen Mixtures Based on Artificial Neural Network
,”
Energy AI
,
2
, p.
100033
.10.1016/j.egyai.2020.100033
19.
Han
,
W.
,
Sun
,
Z.
,
Scholtissek
,
A.
, and
Hasse
,
C.
,
2021
, “
Machine Learning of Ignition Delay Times Under Dual-Fuel Engine Conditions
,”
Fuel
,
288
, p.
119650
.10.1016/j.fuel.2020.119650
20.
Cui
,
Y.
,
Liu
,
H.
,
Wang
,
Q.
,
Zheng
,
Z.
,
Wang
,
H.
,
Yue
,
Z.
,
Ming
,
Z.
,
Wen
,
M.
,
Feng
,
L.
, and
Yao
,
M.
,
2022
, “
Investigation on the Ignition Delay Prediction Model of Multi-Component Surrogates Based on Back Propagation (BP) Neural Network
,”
Combust. Flame
,
237
, p.
111852
.10.1016/j.combustflame.2021.111852
21.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F.
,
2022
, “
Metamodelling of Ignition Delay Time for Natural Gas Blends Under Gas Turbine Operating Conditions
,”
ASME
Paper No. GT2022-82269. 10.1115/GT2022-82269
22.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning
,
Springer
,
New York
.
23.
Ng
,
A.
,
2015
, “
What Data Scientists Should Know About Deep Learning
,”
Speech Presented at Extract Data Conference
, Nov., Vol.
24
.
24.
Chollet
,
F.
,
2018
,
Deep Learning With Python
,
Shelter Island
,
New York
.
25.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
, and
Dubourg
,
V.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.http://jmlr.org/papers/v12/pedregosa11a.html
26.
Burke
,
U.
,
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Heufer
,
K. A.
,
Dagaut
,
P.
, and
Curran
,
H. J.
,
2016
, “
A Detailed Chemical Kinetic Modeling, Ignition Delay Time and Jet-Stirred Reactor Study of Methanol Oxidation
,”
Combust. Flame
,
165
, pp.
125
136
.10.1016/j.combustflame.2015.11.004
27.
Li
,
Y.
,
Zhou
,
C.-W.
,
Somers
,
K. P.
,
Zhang
,
K.
, and
Curran
,
H. J.
,
2017
, “
The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison With Isobutene and 1-Butene
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
403
411
.10.1016/j.proci.2016.05.052
28.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.10.1016/j.proci.2010.05.027
29.
Mohamed
,
A. A. E.-S.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2021
, “
An Experimental and Kinetic Modeling Study of the Auto-Ignition of Natural Gas Blends Containing C1–C7 Alkanes
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
365
373
.10.1016/j.proci.2020.06.015
30.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1993
, “
CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,”
Sandia National Lab.
,
Livermore, CA
, Report No. SAND89-8009B, UC-706.
31.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Davis
,
M. L.
,
Mathieu
,
O.
,
Plichta
,
D.
,
Morones
,
A.
,
Petersen
,
E. L.
, and
Güthe
,
F.
,
2014
, “
Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), pp.
1432
1443
.10.1016/j.combustflame.2013.12.005
32.
Sobol'
,
I. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
U.S.S.R. Comput. Math. Math. Phys.
,
7
(
4
), pp.
86
112
.10.1016/0041-5553(67)90144-9
33.
Bergstra
,
J.
,
Yamins
,
D.
, and
Cox
,
D.
,
2013
, “
Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures
,”
Proceedings of the 30th International Conference on Machine Learning
, Atlanta, GA, Vol. 28, pp.
115
123
.https://proceedings.mlr.press/v28/bergstra13.html
34.
Louppe
,
G.
,
Malone
,
K.
, and
Nahrstaedt
,
H.
,
2020
, “
Tuning a Scikit-Learn Estimator With Skopt—Scikit-Optimize 0.8.1 Documentation
,” Scikit-Optimize, Sequential Model-Based Optimization in Python, accessed Feb. 20, 2023, https://scikit-optimize.github.io/stable/auto_examples/hyperparameter-optimization.html
35.
Akiba
,
T.
,
Sano
,
S.
,
Yanase
,
T.
,
Ohta
,
T.
, and
Koyama
,
M.
,
2019
, “
Optuna: A next-Generation Hyperparameter Optimization Framework
,”
KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
, July, pp.
2623
2631
.10.1145/3292500.3330701
You do not currently have access to this content.