Abstract

A machine learning-based approach is presented, which allows to detect persistent engine faults after a single flight. It utilizes transient in-flight measurements and a transient engine model. The time series of the residuals between the measured data and the data resulting from performance synthesis is evaluated using moving windows containing at least one transient segment. A continuous wavelet transformation and a pretrained convolutional neural network are utilized on the residuals for feature extraction. The fault detection is carried out via a one-class support vector machine, trained exclusively on nominal engine operation data. Therefore, the approach requires no a-priory knowledge of the effects of engine faults on the in-flight measurements. Under the assumption of persistent faults, all windows of a single flight, which contain at least one transient segment, are considered in order to improve the reliability of the fault detection. This approach is validated using measured data of a small helicopter engine that replicates the dynamic flight of the corresponding model helicopter on a ground test bed. Consequently, step changes as well as complex variations of the shaft power output are considered. Four standard gas path sensors are considered. The one-class support vector machine is used successfully to detect two types of total pressure sensor anomalies. Assuming a typical number of transient segments for an average short haul flight, it turns out that persistent faults can be detected within one flight with a probability of above 90%.

References

1.
Fentaye
,
A. D.
,
Baheta
,
A. T.
,
Gilani
,
S. I.
, and
Kyprianidis
,
K. G.
,
2019
, “
A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities
,”
Aerospace
,
6
(
7
), p.
83
.10.3390/aerospace6070083
2.
Koskoletos
,
O. A.
,
Aretakis
,
N.
,
Alexiou
,
A.
,
Romesis
,
C.
, and
Mathioudakis
,
K.
,
2018
, “
Evaluation of Aircraft Engine Diagnostic Methods Through ProDiMES
,”
ASME J. Eng. Gas Turbines Power
, 140(12), p.
121016
.10.1115/1.4040909
3.
Loboda
,
I.
,
Pérez-Ruiz
,
J. L.
, and
Yepifanov
,
S.
,
2018
, “
A Benchmarking Analysis of a Data-Driven Gas Turbine Diagnostic Approach
,”
ASME
Paper No. GT2018-76887.10.1115/GT2018-76887
4.
Pérez-Ruiz
,
J. L.
,
Tang
,
Y.
, and
Loboda
,
I.
,
2021
, “
Aircraft Engine Gas-Path Monitoring and Diagnostics Framework Based on a Hybrid Fault Recognition Approach
,”
Aerospace
,
8
(
8
), p.
232
.10.3390/aerospace8080232
5.
Weiss
,
M.
,
Staudacher
,
S.
,
Becchio
,
D.
,
Keller
,
C.
, and
Mathes
,
J.
,
2022
, “
Steady-State Fault Detection With Full-Flight Data
,”
Machines
,
10
(
2
), p.
140
.10.3390/machines10020140
6.
Eustace
,
R. W.
,
Woodyatt
,
B. A.
,
Merrington
,
G. L.
, and
Runacres
,
A.
,
1994
, “
Fault Signatures Obtained From Fault Implant Tests on an F404 Engine
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
178
183
.10.1115/1.2906789
7.
Merrington
,
G. L.
,
1989
, “
Fault Diagnosis of Gas Turbine Engines From Transient Data
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
237
243
.10.1115/1.3240242
8.
Li
,
Y.
,
2003
, “
A Gas Turbine Diagnostic Approach With Transient Measurements
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
2
), pp.
169
177
.10.1243/09576500360611317
9.
Ogaji
,
S.
,
Li
,
Y.
,
Sampath
,
S.
, and
Singh
,
R.
,
2003
, “
Gas Path Fault Diagnosis of a Turbofan Engine From Transient Data Using Artificial Neural Networks
,”
ASME
Paper No. GT2003-38423.10.1115/GT2003-38423
10.
Simmons
,
J. C.
, and
Danai
,
K.
,
2012
, “
In-Flight Isolation of Degraded Engine Components by Shape Comparison of Transient Outputs
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
061602
.10.1115/1.4005814
11.
Borguet
,
S.
,
Henriksson
,
M.
,
McKelvey
,
T.
, and
Léonard
,
O.
,
2011
, “
A Study on Engine Health Monitoring in the Frequency Domain
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
081604
.10.1115/1.4002832
12.
Dai
,
X.
, and
Gao
,
Z.
,
2013
, “
From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis
,”
IEEE Trans. Ind. Inf.
,
9
(
4
), pp.
2226
2238
.10.1109/TII.2013.2243743
13.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
14.
Yang
,
Y.
,
Nikolaidis
,
T.
,
Jafari
,
S.
, and
Pilidis
,
P.
,
2024
, “
Gas Turbine Engine Transient Performance and Heat Transfer Effect Modelling: A Comprehensive Review, Research Challenges, and Exploring the Future
,”
Appl. Therm. Eng.
,
236
, p.
121523
.10.1016/j.applthermaleng.2023.121523
15.
Weiss
,
M.
,
Staudacher
,
S.
,
Mathes
,
J.
,
Becchio
,
D.
, and
Keller
,
C.
,
2022
, “
Uncertainty Quantification for Full-Flight Data Based Engine Fault Detection With Neural Networks
,”
Machines
,
10
(
10
), p.
846
.10.3390/machines10100846
16.
Alcaraz
,
R. L.
, and
García-Fogeda
,
P.
,
2020
, “
Signal Noise Filtering Using Wavelet Coefficient Temporal Correlation Techniques
,”
AIP Conf. Proc.
,
2293
(
1
), p.
200012
.10.1063/5.0028948
17.
Wang
,
W.
, and
McFadden
,
P.
,
1996
, “
Application of Wavelets to Gearbox Vibration Signals for Fault Detection
,”
J. Sound Vib.
,
192
(
5
), pp.
927
939
.10.1006/jsvi.1996.0226
18.
Sinou
,
J. J.
,
2009
, “
An Experimental Investigation of Condition Monitoring for Notched Rotors Through Transient Signals and Wavelet Transform
,”
Exp. Mech.
,
49
(
5
), pp.
683
695
.10.1007/s11340-008-9193-6
19.
Cheng
,
Y.
,
Lin
,
M.
,
Wu
,
J.
,
Zhu
,
H.
, and
Shao
,
X.
,
2021
, “
Intelligent Fault Diagnosis of Rotating Machinery Based on Continuous Wavelet Transform-Local Binary Convolutional Neural Network
,”
Knowl.-Based Syst.
,
216
, p.
106796
.10.1016/j.knosys.2021.106796
20.
Kefalas
,
A.
,
Ofner
,
A. B.
,
Pirker
,
G.
,
Posch
,
S.
,
Geiger
,
B. C.
, and
Wimmer
,
A.
,
2021
, “
Detection of Knocking Combustion Using the Continuous Wavelet Transformation and a Convolutional Neural Network
,”
Energies
,
14
(
2
), p.
439
.10.3390/en14020439
21.
Varchev
,
T.
,
Weiss
,
M.
,
Staudacher
,
S.
, and
Koch
,
C.
,
2022
, “
Transient Engine Condition Monitoring of Micro Gas Turbines in a Highly Dynamic Setting
,”
ASME
Paper No. GT2022-82377.10.1115/GT2022-82377
22.
Chen
,
L.
,
Li
,
S.
,
Bai
,
Q.
,
Yang
,
J.
,
Jiang
,
S.
, and
Miao
,
Y.
,
2021
, “
Review of Image Classification Algorithms Based on Convolutional Neural Networks
,”
Remote Sens.
,
13
(
22
), p.
4712
.10.3390/rs13224712
23.
Guérin
,
J.
,
Gibaru
,
O.
,
Thiery
,
S.
, and
Nyiri
,
E.
,
2018
, “
CNN Features Are Also Great at Unsupervised Classification
,” 8th International Conference on Computer Science, Engineering and Applications, Academy & Industry Research Collaboration Center (
AIRCC
), Melbourne, Australia, Feb., pp.
83
95
.10.5121/csit.2018.80308
24.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Am. Meteorol. Soc.
,
79
(
1
), pp.
61
78
.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
25.
Addison
,
P. S.
,
2005
, “
Wavelet Transforms and the ECG: A Review
,”
Physiol. Meas.
,
26
(
5
), pp.
R155
R199
.10.1088/0967-3334/26/5/R01
26.
Kaiser
,
G.
, and
Hudgins
,
L. H.
,
1994
,
A Friendly Guide to Wavelets
,
Birkhäuser
, Boston, MA.
27.
Aggarwal
,
P.
,
Mishra
,
N. K.
,
Fatimah
,
B.
,
Singh
,
P.
,
Gupta
,
A.
, and
Joshi
,
S. D.
,
2022
, “
COVID-19 Image Classification Using Deep Learning: Advances, Challenges and Opportunities
,”
Comput. Biol. Med.
,
144
, p.
105350
.10.1016/j.compbiomed.2022.105350
28.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (
CVPR
), Las Vegas, NV, June 27–30, pp.
770
778
.10.1109/CVPR.2016.90
29.
He
,
T.
,
Zhang
,
Z.
,
Zhang
,
H.
,
Zhang
,
Z.
,
Xie
,
J.
, and
Li
,
M.
,
2019
, “
Bag of Tricks for Image Classification With Convolutional Neural Networks
,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (
CVPR
), Long Beach, CA, June 15–20, pp.
558
567
.10.1109/CVPR.2019.00065
30.
Cao
,
L.
,
Chua
,
K.
,
Chong
,
W.
,
Lee
,
H.
, and
Gu
,
Q.
,
2003
, “
A Comparison of PCA, KPCA and Ica for Dimensionality Reduction in Support Vector Machine,” “Support Vector Machines
,”
Neurocomputing
,
55
(
1–2
), pp.
321
336
.10.1016/S0925-2312(03)00433-8
31.
Tax
,
D. M.
, and
Duin
,
R. P.
,
2004
, “
Support Vector Data Description
,”
Mach. Learn.
,
54
(
1
), pp.
45
66
.10.1023/B:MACH.0000008084.60811.49
32.
Schölkopf
,
B.
,
Williamson
,
R. C.
,
Smola
,
A.
,
Shawe-Taylor
,
J.
, and
Platt
,
J.
,
1999
, “
Support Vector Method for Novelty Detection
,”
Advances in Neural Information Processing Systems
, Vol.
12
,
S.
Solla
,
T.
Leen
, and
K.
Müller
, eds.,
MIT Press
, Cambridge, MA.
33.
Wang
,
Z.
, and
Cha
,
Y.-J.
,
2021
, “
Unsupervised Deep Learning Approach Using a Deep Auto-Encoder With a One-Class Support Vector Machine to Detect Damage
,”
Struct. Health Monit.
,
20
(
1
), pp.
406
425
.10.1177/1475921720934051
34.
Schölkopf
,
B.
,
Platt
,
J. C.
,
Shawe-Taylor
,
J.
,
Smola
,
A. J.
, and
Williamson
,
R. C.
,
2001
, “
Estimating the Support of a High-Dimensional Distribution
,”
Neural Comput.
,
13
(
7
), pp.
1443
1471
.10.1162/089976601750264965
35.
Baumann
,
M.
,
Koch
,
C.
, and
Staudacher
,
S.
,
2020
, “
Experimental Identification of Steady-State Turbomachinery Heat Transfer Using Nondimensional Groups
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
6
), p.
061806
.10.1115/1.4046794
36.
Iberall
,
A. S.
,
1950
, “
Attenuation of Oscillatory Pressures in Instrument Lines
,”
Trans. Am. Soc. Mech. Eng.
,
72
(
5
), pp.
689
695
.10.1115/1.4016800
37.
Braun
,
H.
,
1992
, “
Experimentelle Untersuchungen Zur Dynamischen Druck- Und Temperaturmessung in Einer Hubschrauber-Gasturbine
,” Ph.D. thesis, Munich, Germany.
38.
Southwest Research Institute, 2016,
NPSS User Guide
,” Technical Report, Southwest Research Institute, San Antonio, TX.
39.
Kappei
,
F.
,
2007
, “
Verbesserung Der Analyse Des Höhenverhaltens Des Niederdruckturbinenwirkungsgrades Bei Turboflugtriebwerken
,” Ph.D. thesis, Berlin, Germany.
40.
Seibold
,
F.
,
Schwab
,
A.
,
Dubois
,
V.
,
Poser
,
R.
,
Weigand
,
B.
, and
von Wolfersdorf
,
J.
,
2022
, “
Conduction and Inertia Correction for Transient Thermocouple Measurements. Part I: Analytical and Numerical Modelling
,”
E3S Web of Conferences
,
EDP Sciences
, Santorini, Greece, Sept. 21–22, Vol.
345
, p.
01002
.10.1051/e3sconf/202234501002
41.
Krille
,
T.
,
Poser
,
R.
,
Diel
,
M.
, and
von Wolfersdorf
,
J.
,
2022
, “
Conduction and Inertia Correction for Transient Thermocouple Measurements. Part II: Experimental Validation and Application
,”
E3S Web of Conferences
, EDP Sciences, Santorini, Greece, Sept. 21–22, Vol.
345
, p.
01003
.10.1051/e3sconf/202234501003
42.
Iwana
,
B. K.
, and
Uchida
,
S.
,
2021
, “
An Empirical Survey of Data Augmentation for Time Series Classification With Neural Networks
,”
Plos One
,
16
(
7
), p.
e0254841
.10.1371/journal.pone.0254841
43.
Wong
,
S. C.
,
Gatt
,
A.
,
Stamatescu
,
V.
, and
McDonnell
,
M. D.
,
2016
, “
Understanding Data Augmentation for Classification: When to Warp?
,” 2016 International Conference on Digital Image Computing: Techniques and Applications (
DICTA
), Gold Coast, QLD, Australia, Nov. 30–Dec. 2, pp.
1
6
.10.1109/DICTA.2016.7797091
44.
Matthews
,
B.
, and
Oza
,
N.
,
2012
, “
Sample Flight Data
,” NASA, accessed Aug. 14, 2023, https://c3.ndc.nasa.gov/dashlink/projects/85/
45.
Curnock
,
B.
,
2000
, “
Obidicote Project - Word Package 4: Steady- State Test Cases
,” Rolls-Royce, Manchester, UK, Report No. DNS62433.
46.
Feller
,
W.
,
1971
,
An Introduction to Probability Theory and Its Applications, Volume 2
, Vol.
81
,
Wiley
, New York.
47.
Amirkhani
,
S.
,
Tootchi
,
A.
, and
Chaibakhsh
,
A.
,
2022
, “
Fault Detection and Isolation of Gas Turbine Using Series–Parallel NARX Model
,”
ISA Trans.
,
120
, pp.
205
221
.10.1016/j.isatra.2021.03.019
48.
Amirkhani
,
S.
,
Chaibakhsh
,
A.
, and
Ghaffari
,
A.
,
2020
, “
Nonlinear Robust Fault Diagnosis of Power Plant Gas Turbine Using Monte Carlo-Based Adaptive Threshold Approach
,”
ISA Trans.
,
100
, pp.
171
184
.10.1016/j.isatra.2019.11.035
49.
Amozegar
,
M.
, and
Khorasani
,
K.
,
2016
, “
An Ensemble of Dynamic Neural Network Identifiers for Fault Detection and Isolation of Gas Turbine Engines
,”
Neural Networks
,
76
, pp.
106
121
.10.1016/j.neunet.2016.01.003
50.
Zhou
,
D.
,
Yao
,
Q.
,
Wu
,
H.
,
Ma
,
S.
, and
Zhang
,
H.
,
2020
, “
Fault Diagnosis of Gas Turbine Based on Partly Interpretable Convolutional Neural Networks
,”
Energy
,
200
, p.
117467
.10.1016/j.energy.2020.117467
You do not currently have access to this content.