Abstract

The aircraft engine is a safety-critical part of an aircraft. Constructive modifications resulting in ecological and economic improvements of the engine lead to necessary changes in manufacturing processes. The turbine disks in the low-pressure section are made of temperature resistant nickel-based superalloys. For the connection of the turbine blades with the disk, fir-tree slots are machined by broaching. The broaching process achieves high geometrical accuracy as well as process reliable rim zone properties. Alternative manufacturing processes such as milling or wire electrical discharge machining are still the subject of research in many applications and do not yet achieve the required process reliability. Especially in finishing operations, tool geometry is complex. In previous research work, the local rake angle and, as a result, the acting cutting force were determined analytically and empirically. Based on these results, the relationship between tool geometry, cutting force, and tool wear will be investigated in this work to enable a cutting length dependent prediction of tool wear. The aim of this work is a model-based prediction of tool wear for a given cutting length and a previously unknown tool geometry. For this purpose, a method was developed to predict tool wear using empirical test data and internal machine data. With these results, it is not only possible to identify critical points on newly developed broaching tools by maxima of the cutting force but also to predict wear locally, depending on the cutting length. Thus, tools can be optimized, and efficiency of the broaching process is increased.

References

1.
Heidemanns
,
L.
,
Seelbach
,
T.
,
Küpper
,
U.
,
Seimann
,
M.
, and
Bergs
,
T.
,
2021
, “
Manufacturing Technologies for Fir Tree Slots: A Technical and Economic Evaluation
,”
ASME
Paper No. GT2021-59652.10.1115/GT2021-59652
2.
Buk, J., Sułkowicz
,
P.
, and
Szeliga
,
D.
,
2023
, “
The Review of Current and Proposed Methods of Manufacturing Fir Tree Slots of Turbine Aero Engine Discs
,”
Materials
,
16
(
14
), p.
5143
.10.3390/ma16145143
3.
Rolls-Royce, Ltd.
,
2015
,
The Jet Engine
,
Rolls-Royce
,
Chichester, West Sussex, UK
.
4.
Mo
,
S. P.
,
Axinte
,
D. A.
,
Hyde
,
T. H.
, and
Gindy
,
N. N. Z.
,
2005
, “
An Example of Selection of the Cutting Condition in Broaching of Heat-Resistant Alloys Based on Cutting Forces, Surface Roughness and Tool Wear
,”
J. Mater. Process. Technol.
,
160
(
3
), pp.
382
389
.10.1016/j.jmatprotec.2004.06.026
5.
Özelkan
,
E. C.
,
Öztürk
,
Ö.
, and
Budak
,
E.
,
2007
, “
Optimization of Broaching Design
,”
Proceedings of the 2007 Industrial Engineering Research Conference
, Pittsburgh, PA.https://core.ac.uk/download/pdf/11739475.pdf
6.
Hosseini
,
A.
, and
Kishawy
,
H. A.
,
2013
, “
Parametric Simulation of Tool and Workpiece Interaction in Broaching Operation
,”
Int. J. Manuf. Res.
,
8
(
4
), pp.
422
442
.10.1504/IJMR.2013.057750
7.
Mandrile
,
S.
,
Cazenave-Larroche
,
G.
,
Vernault
,
C.
,
Dessein
,
G.
,
Denape
,
J.
, and
Paris
,
J.-Y.
,
2014
, “
Development of an In-House Cutting Forces Simulation for Fir-Tree Broaching Process
,”
Int. J. Mach. Machinabil. Mater.
,
15
(
1/2
), pp.
18
35
.10.1504/IJMMM.2014.059185
8.
Knoll
,
L.
,
1926
,
Räumen
,
Werkstattbücher
,
Berlin, Germany
.
9.
DIN
,
1971
, “
Räumwerkzeuge—Gestaltung von Schneidzahn und Spankammer
,”
Beuth Vertrieb GmbH
,
Berlin, Germany
, Standard No. DIN 1416.
10.
DIN
,
1985
, “
Bezugssysteme und Winkel am Schneidteil des Werkzeuges
,”
Beuth Vertrieb GmbH
,
Berlin, Germany
, Standard No. DIN 6581.
11.
Lauffer
,
H.-J.
,
1988
,
Einsatz von Prozessmodellen zur rechnergestützten Auslegung von Räumwerkzeugen
(Forschungsberichte aus dem Institut für Werkzeugmaschinen und Betriebstechnik), Universität Karlsruhe (TH) Institut für Werkzeugmaschinen und Betriebstechnik,
Karlsruhe, Germany
.
12.
Kishawy
,
H. A.
,
Hosseini
,
A.
,
Moetakef-Imani
,
B.
, and
Astakhov
,
V. P.
,
2012
, “
An Energy Based Analysis of Broaching Operation: Cutting Forces and Resultant Surface Integrity
,”
CIRP Ann. – Manuf. Technol.
,
61
(
1
), pp.
107
110
.10.1016/j.cirp.2012.03.004
13.
Lang
,
H.
,
2005
,
Trocken Räumen mit hohen Schnittgeschwindigkeiten
(Forschungsberichte aus dem wbk Institut für Produktionstechnik), Universität Karlsruhe (TH) Institut für Werkzeugmaschinen und Betriebstechnik,
Karlsruhe, Germany
.
14.
Pöhls
,
M.
,
2000
,
Untersuchungen zum Räumen mit Feinstkornhartmetall und Cermet
(Berichte aus der Produktionstechnik),
Shaker Verlag
,
Aachen, Germany
.
15.
Seimann
,
M. A.
,
2019
,
Predictive Tool and Process Design for Broaching of Nickel-Base Alloys With Cemented Carbide
(Berichte aus der Produktionstechnik),
Apprimus Verlag
,
Aachen, Germany
.
16.
Vogtel
,
P.
,
2016
,
Außenräumen von Nickelbasislegierungen mit Hartmetall-Werkzeugen
(Berichte aus der Produktionstechnik),
Apprimus Verlag
,
Aachen, Germany
.
17.
Meier
,
H.
,
2018
,
Einfluss des Räumens auf den Bauteilzustand in der Prozesskette Weichbearbeitung–Wärmebehandlung–Hartbearbeitung
(Forschungsberichte aus dem wbk Institut für Produktionstechnik), Universität Karlsruhe (TH) Institut für Werkzeugmaschinen und Betriebstechnik,
Karlsruhe, Germany
.
18.
Victor
,
H. R.
,
1976
, “
Schnittkraftberechnung für das Räumen
,”
CIRP Ann.
,
25
(
1
), pp.
7
11
.
19.
Opferkuch
,
R.
,
1981
,
Die Werkzeugbeanspruchung beim Räumen
(Forschungsberichte aus dem Institut für Werkzeugmaschinen und Betriebstechnik), Universität Karlsruhe (TH) Institut für Werkzeugmaschinen und Betriebstechnik,
Karlsruhe, Germany
.
20.
Stoney
,
R.
,
Pullen
,
T.
,
Aldwell
,
B.
,
Gierlings
,
S.
,
Brockmann
,
M.
,
Geraghty
,
D.
,
Veselovac
,
D.
,
Klocke
,
F.
, and
Donnell
,
G. E. O.
,
2014
, “
Observations of Surface Acoustic Wave Strain and Resistive Strain Measurements on Broaching Tools for Process Monitoring
,”
Procedia CIRP
,
14
, pp.
66
71
.10.1016/j.procir.2014.03.024
21.
Klocke
,
F.
,
Veselovac
,
D.
,
Gierlings
,
S.
, and
Tamayo
,
L. E.
,
2012
, “
Development of Process Monitoring Strategies in Broaching of Nickel-Based Alloys
,”
Mech. Ind.
,
13
(
1
), pp.
3
9
.10.1051/meca/2011147
22.
Seelbach
,
T.
,
2024
,
Prediction of Dimensional Accuracy When Broaching Profiled Slots
(Berichte aus der Produktionstechnik),
Apprimus Verlag
,
Aachen, Germany
.
23.
Arrazola
,
P. J.
,
Rech
,
J.
,
M'Saoubi
,
R.
, and
Axinte
,
D.
,
2020
, “
Broaching: Cutting Tools and Machine Tools for Manufacturing High Quality Features in Components
,”
CIRP Ann.
,
69
(
2
), pp.
554
577
.10.1016/j.cirp.2020.05.010
24.
Miura
,
K.
,
Seelbach
,
T.
,
Augspurger
,
T.
,
Schraknepper
,
D.
, and
Bergs
,
T.
,
2020
, “
Voltage- and Current-Measurements Based Force Estimation in Broaching Using Synchronous Motor Drive
,”
MIC Procedia
, 20, pp.
48
54
.10.2139/ssrn.3724102
25.
Axinte
,
D. A.
, and
Gindy
,
N.
,
2003
, “
Tool Condition Monitoring in Broaching
,”
Wear
,
254
(
3–4
), pp.
370
382
.10.1016/S0043-1648(03)00003-6
26.
Seimann
,
M.
,
Peng
,
B.
,
Fischersworring-Bunk
,
A.
,
Rauch
,
S.
,
Klocke
,
F.
, and
Döbbeler
,
B.
,
2018
, “
Model-Based Analysis in Finish Broaching of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
97
(
9–12
), pp.
3751
3760
.10.1007/s00170-018-2221-5
27.
Seelbach
,
T.
,
Schraknepper
,
D.
, and
Bergs
,
T.
,
2022
, “
Empirical Analysis of Mechanical and Thermal Effects on Elastic Workpiece Deformations During Broaching of Safety-Critical Components
,”
MIC Procedia
, 22, pp.
66
67
.10.2139/Ssrn.4251383
28.
Hardt
,
M.
,
2022
,
Modeling the Material Behavior Under Metal Cutting Conditions
(Berichte aus der Produktionstechnik),
Apprimus Verlag
,
Aachen, Germany
.
29.
Special Metals,
2007
, “
Inconel Alloy 718
,”
Special Metals Corporation
, New Hartford, New York.
30.
DIN
,
1991
, “
Toleranz für Längen- und Winkelmaße ohne einzelne Toleranzeintragung
,”
Beuth Vertrieb GmbH
,
Berlin, Germany
, Standard No. DIN 2768.
You do not currently have access to this content.