Abstract

The heavy-duty transportation sector has primarily relied on conventional diesel combustion engines given their reliability and high thermal efficiency relative to spark ignition engines, but increased focus on reducing greenhouse gas emissions has led to investigation into alternative fuels. Gaseous hydrogen fuel has garnered a great deal of recent interest in the engine community given it has zero carbon, but hydrogen is not available at the scale and cost that petroleum fuels are currently available, and this is a barrier to adoption for industries that are looking to decarbonize their operations. Because of the fuel flexibility provided, dual fuel technology offers a pathway for some industries to adopt hydrogen as a fuel source while maintaining sufficient flexibility in times and locations where the new fuel is not yet available. This computational study investigates dual fuel combustion in a large bore locomotive engine architecture using direct injected diesel and port injected gaseous hydrogen fuel. With an optimal port fuel injection configuration from previous work, simulations of varying substitution ratio, compression ratio, manifold air temperature, diesel injection timing, and diesel injection pressure were performed to understand their effect on combustion performance. Results indicated that both increased substitution ratio and higher intake air temperature accelerates hydrogen flame propagation and can result in high peak cylinder pressures. Additionally, diesel injection timing and injection pressure were demonstrated as effective methods for controlling dual fuel combustion heat release rates.

References

1.
Muratori
,
M.
,
Kunz
,
T.
,
Hula
,
A.
, and
Freedberg
,
M.
,
2023
, U.S. National Blueprint for Transportation Decarbonization: A Joint Strategy to Transform Transportation, Department of Energy, Office of Energy Efficiency and Renewable Energy, Report No.
DOE/EE-2674
.https://rosap.ntl.bts.gov/view/dot/66718
2.
Gainey
,
B.
,
Bhatt
,
A.
,
Gandolfo
,
J.
,
Vedpathak
,
K.
,
Pearce
,
C.
,
Redon
,
F.
, and
Lawler
,
B.
,
2023
, “
Experimental Comparison of Diesel and Wet Ethanol on an Opposed-Piston Two Stroke (OP2S) Engine
,”
SAE
Paper No. 2023-01-0335.10.4271/2023-01-0335
3.
Gainey
,
B.
, and
Lawler
,
B.
,
2021
, “
The Role of Alcohol Biofuels in Advanced Combustion: An Analysis
,”
Fuel
,
283
, p.
118915
.10.1016/j.fuel.2020.118915
4.
Tsujimura
,
T.
, and
Suzuki
,
Y.
,
2017
, “
The Utilization of Hydrogen in Hydrogen/Diesel Dual Fuel Engine
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
14019
14029
.10.1016/j.ijhydene.2017.01.152
5.
Dimitriou
,
P.
,
Kumar
,
M.
,
Tsujimura
,
T.
, and
Suzuki
,
Y.
,
2018
, “
Combustion and Emission Characteristics of a Hydrogen-Diesel Dual-Fuel Engine
,”
Int. J. Hydrogen Energy
,
43
(
29
), pp.
13605
13617
.10.1016/j.ijhydene.2018.05.062
6.
Karagöz
,
Y.
,
Sandalcı
,
T.
,
Yüksek
,
L.
,
Dalkılıç
,
A. S.
, and
Wongwises
,
S.
,
2016
, “
Effect of Hydrogen–Diesel Dual-Fuel Usage on Performance, Emissions and Diesel Combustion in Diesel Engines
,”
Adv. Mech. Eng.
,
8
(
8
).10.1177/1687814016664458
7.
Hosseini
,
S. H.
,
Tsolakis
,
A.
,
Alagumalai
,
A.
,
Mahian
,
O.
,
Lam
,
S. S.
,
Pan
,
J.
,
Peng
,
W.
,
Tabatabaei
,
M.
, and
Aghbashlo
,
M.
,
2023
, “
Use of Hydrogen in Dual-Fuel Diesel Engines
,”
Prog. Energy Combust. Sci.
,
98
, p.
101100
.10.1016/j.pecs.2023.101100
8.
Zhao
,
F.
,
Asmus
,
T. N.
,
Assanis
,
D. N.
,
Dec
,
J. E.
,
Eng
,
J. A.
, and
Najt
,
P. M.
,
2003
, “
Homogeneous Charge Compression Ignition (HCCI) Engines
,”
SAE
Paper No. PT-94.https://www.sae.org/publications/technical-papers/content/PT-94/
9.
Dec
,
J. E.
,
Hwang
,
W.
, and
Sjöberg
,
M.
,
2006
, “
An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging
,”
SAE
Paper No. 2006-01-1518.10.4271/2006-01-1518
10.
Dec
,
J. E.
,
2002
, “
A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines
,”
SAE
Paper No. 2002-01-1309.10.4271/2002-01-1309
11.
Xiao
,
H.
,
Wang
,
Q.
,
Shen
,
X.
,
An
,
W.
,
Duan
,
Q.
, and
Sun
,
J.
,
2014
, “
An Experimental Study of Premixed Hydrogen/Air Flame Propagation in a Partially Open Duct
,”
Int. J. Hydrogen Energy
,
39
(
11
), pp.
6233
6241
.10.1016/j.ijhydene.2013.05.003
12.
Qin
,
Y.
, and
Chen
,
X.
,
2021
, “
Flame Propagation of Premixed Hydrogen-Air Explosion in a Closed Duct With Obstacles
,”
Int. J. Hydrogen Energy
,
46
(
2
), pp.
2684
2701
.10.1016/j.ijhydene.2020.10.097
13.
Jung
,
Y.
,
Lee
,
M. J.
, and
Kim
,
N. I.
,
2016
, “
Direct Prediction of Laminar Burning Velocity and Quenching Distance of Hydrogen-Air Flames Using an Annular Stepwise Diverging Tube (ASDT)
,”
Combust. Flame
,
164
, pp.
397
399
.10.1016/j.combustflame.2015.12.005
14.
Aung
,
K. T.
,
Hassan
,
M. I.
, and
Faeth
,
G. M.
,
1997
, “
Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure
,”
Combust. Flame
,
109
(
1–2
), pp.
1
24
.10.1016/S0010-2180(96)00151-4
15.
Kahraman
,
E.
,
Cihangir Ozcanlı
,
S.
, and
Ozerdem
,
B.
,
2007
, “
An Experimental Study on Performance and Emission Characteristics of a Hydrogen Fuelled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
2066
2072
.10.1016/j.ijhydene.2006.08.023
16.
Karim
,
G. A.
,
2003
, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
28
(
5
), pp.
569
577
.10.1016/S0360-3199(02)00150-7
17.
Li
,
H.
, and
Karim
,
G. A.
,
2006
, “
Hydrogen Fueled Spark-Ignition Engines Predictive and Experimental Performance
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
230
236
.10.1115/1.2055987
18.
Kazmouz
,
S. J.
,
Wu
,
S.
,
Klingbeil
,
A.
,
Lavertu
,
T.
,
Jayakar
,
V.
,
Sheth
,
P.
,
Wijeyakulasuriya
,
S.
, and
Ameen
,
M.
,
2023
, “
Large-Bore Locomotive Engines–Numerical Simulations of Natural Gas/Diesel Dual-Fuel Operation
,”
ASME
Paper No. ICEF2023-110164.10.1115/ICEF2023-110164
19.
O'Donnell
,
P.
,
Kazmouz
,
S.
,
Wu
,
S.
,
Ameen
,
M.
,
Klingbeil
,
A.
,
Lavertu
,
T.
,
Jayakar
,
V.
,
Sheth
,
P.
, and
Wijeyakulasuriya
,
S.
,
2024
, “
Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine
,”
SAE
Paper No. 10.4271/No 2024-01-2694.
20.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2023
,
Converge 3.0
,
Convergent Science
,
Madison, WI
.
21.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2023
,
CONVERGE 3.0 Manual
,
Convergent Science
,
Madison, WI
.
22.
Soave
,
G.
,
1972
, “
Equilibrium Constants From a Modified Redlich-Kwong Equation of State
,”
Chem. Eng. Sci.
,
27
(
6
), pp.
1197
1203
.10.1016/0009-2509(72)80096-4
23.
Barton
,
I. E.
,
1998
, “
Comparison of SIMPLE‐and PISO‐Type Algorithms for Transient Flows
,”
Int. J. Numer. Methods Fluids
,
26
(
4
), pp.
459
483
.10.1002/(SICI)1097-0363(19980228)26:4<459::AID-FLD645>3.0.CO;2-U
24.
Oliveira
,
J.
,
Raad
,
I.
, and
Issa
,
P.
,
2001
, “
An Improved PISO Algorithm for the Computation of Buoyancy-Driven Flows
,”
Numer. Heat Transfer Part B Fundam.
,
40
(
6
), pp.
473
493
.10.1080/104077901753306601
25.
Hanjalić
,
K.
, and
Launder
,
B. E.
,
1972
, “
A Reynolds Stress Model of Turbulence and Its Application to Thin Shear Flows
,”
J. Fluid Mech.
,
52
(
4
), pp.
609
638
.10.1017/S002211207200268X
26.
Spessa
,
E.
,
1999
, “
A Contribution to the Analysis of Turbulence Anisotropy and Nonhomogeneity in an Open-Chamber Diesel Engine
,” pp.
226
234
.
27.
MacDonald
,
J. R.
, and
Fajardo
,
C. M.
,
2021
, “
Turbulence Anisotropy Investigations in an Internal Combustion Engine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091011
.10.1115/1.4050633
28.
Soni, R., Gößnitzer, C., Pirker, G., and Wimmer, A., 2020, “Visualization of Turbulence Anisotropy in the In-Cylinder Flow of Internal Combustion Engines,”
SAE
Paper No. 2020-01-1105.10.4271/2020-01-1105
29.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.10.1007/BF01061452
30.
Dong
,
S.
,
Wagnon
,
S. W.
,
Pratali Maffei
,
L.
,
Kukkadapu
,
G.
,
Nobili
,
A.
,
Mao
,
Q.
,
Pelucchi
,
M.
, et al.,
2022
, “
A New Detailed Kinetic Model for Surrogate Fuels: C3MechV3
,”
Appl. Energy Combust. Sci.
,
9
, p.
100043
.10.1016/j.jaecs.2021.100043
31.
Raju
,
M.
,
Wang
,
M.
,
Dai
,
M.
,
Piggott
,
W.
, and
Flowers
,
D.
,
2012
, “
Acceleration of Detailed Chemical Kinetics Using Multi-Zone Modeling for CFD in Internal Combustion Engine Simulations
,”
SAE
Paper No. 2012-01-0135.10.4271/2012-01-0135
32.
Raju
,
M.
,
Wang
,
M.
,
Senecal
,
P. K.
,
Som
,
S.
, and
Longman
,
D. E.
,
2012
, “
A Reduced Diesel Surrogate Mechanism for Compression Ignition Engine Applications
,”
ASME
Paper No. ICEF2012-92045.10.1115/ICEF2012-92045
33.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atom. Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
34.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Paper No. 872089.10.4271/872089
35.
Amsden
,
A. A.
,
1989
, “
A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-11560-MS
.10.2172/6228444
36.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
37.
Reitz
,
R.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atom. Spray Technol.
,
3
(
4
), pp.
309
337
.https://www.researchgate.net/publication/234279474_Modeling_atomization_processes_in_high-pressure_vaporizing_sprays
38.
Amsden
,
A.
,
1997
, “
KIVA3V. A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,” Los Alamos National Laboratory, Los Alamos, NM, Standard No.
ESTSC-000154MLTPL01
.https://www.osti.gov/biblio/477117
39.
Shi
,
J. Q.
, and
Choi
,
T.
,
2011
,
Gaussian Process Regression Analysis for Functional Data
,
CRC Press
, Boca Raton, FL.
40.
Williams
,
C.
, and
Rasmussen
,
C.
,
1995
, “
Gaussian Processes for Regression
,”
Advances in Neural Information Processing Systems
, 8.
You do not currently have access to this content.