Abstract

A new approach is presented for estimating the soil-water characteristic curve (SWCC) of granular porous media along a drainage path using the relatively simple measurements of grain size distribution (GSD) and mass-volume relationships (void ratio). GSD measured using mechanical sieve analysis is converted into an equivalent population of smooth, spherical particles. Pore size distributions representing relatively loose and relatively dense packing conditions are calculated from the geometry of idealized two-dimensional unit pores formed among particle groups randomly assembled from the simulated particle population. The Young–Laplace equation is used to quantify the amount of pore water retained in the form of thin films, liquid bridges, and completely filled pockets, thus allowing the SWCC to be modeled over the entire saturation range. The measured void ratio is used to constrain the modeled SWCC via the theoretical consideration of the work done to expand air-water interfaces throughout the matrix. Nine sets of results for sands and glass beads are used to evaluate the model’s performance. SWCCs are most effectively predicted in the capillary and funicular saturation regimes (20 % < S <100 %), with more deviation observed in the pendular regime (S < 20 %). Air-entry pressure is predicted within an average error of 8 %. Assumptions and constraints required in the framework restrict the general applicability of the approach to poorly graded materials with predominant grain sizes in the sand- to silt-sized range.

References

1.
Ahuja
,
L. R
,
Naney
,
J. W.
, and
Williams
,
R. D.
, (
1985
), “
Estimating Soil-Water Characteristics from Simpler Properties or Limited Data
,”
Soil Sci. Soc. Am. J.
, Vol.
49
, pp.
1100
1105
. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(236)
2.
Arya
,
L. M.
,
Leij
,
F. J.
,
van Genuchten
,
M. Th.
, and
Shouse
,
P. J.
,
1999
, “
Scaling Parameter to Predict the Soil-Water Characteristic from Particle-Size Distribution Data
,”
Soil Sci. Soc. Am. J.
, Vol.
63
, pp.
510
519
. https://doi.org/10.2136/sssaj1999.03615995006300030013x
3.
Arya
,
L. M.
, and
Paris
,
J. F.
,
1981
, “
A Physico-Empirical Model to Predict the Soil Moisture Characteristic from Particle Size Distribution and Bulk Density Data
,”
Soil Sci. Soc. Am. J.
, Vol.
45
, pp.
1023
1030
. https://doi.org/10.2136/sssaj1981.03615995004500060004x
4.
Assouline
,
S. D.
,
Tessier
,
D.
, and
Bruand
,
A.
,
1998
, “
A Conceptual Model of the Soil Water Retention Curve
,”
Water Resour. Res.
, Vol.
34
, pp.
223
231
. https://doi.org/10.1029/97WR03039
5.
Blunt
,
M. J.
,
2001
, “
Flow in Porous Media: Pore Network Models and Multiphase Flow
,”
Curr. Opin. Colloid Interface Sci.
, Vol
6
, pp.
197
207
. https://doi.org/10.1016/S1359-0294(01)00084-X
6.
Chan
,
T. P.
and
Govindaraju
,
R. S.
,
2003
, “
A New Model for Soil Hydraulic Properties Based on a Stochastic Conceptualization of Porous Media
,”
Water Resour. Res.
, Vol.
39
, p. 1195. https://doi.org/10.1029/2002WR001954
7.
Chan
,
T. P.
and
Govindaraju
,
R. S.
,
2004
, “
Estimating Soil Water Retention Curve from Particle-Size Distribution Based on Polydisperse Sphere Systems
,”
Vadose Zone J.
, Vol.
3
, pp.
1443
1454
.
8.
Clayton
,
W. S.
,
1996
, “
Relative Permeability-Saturation-Capillary Head Relationships for Air Sparging in Soils
,” Ph.D. dissertation,
Colorado School of Mines
, Golden, CO.
9.
Dodds
,
J. A.
, and
Srivastava
,
P.
,
2006
, “
Capillary Pressure Curves of Sphere Packings: Correlation of Experimental Results and Comparison with Predictions from a Network Model of Pore Space
,”
Part. Part. Syst. Charact.
, Vol.
23
, pp.
29
39
. https://doi.org/10.1002/ppsc.200501017
10.
Fredlund
,
M. D.
,
Fredlund
,
D. G.
, and
Wilson
,
G.W.
,
1997
, “
Prediction of the Soil-Water Characteristic Curve from Grain-Size Distribution and Volume-Mass Properties
,”
Proceedings of the 3rd Brazilian Symposium on Unsaturated Soils
, Rio de Janeiro, April 22–25, Vol.
1
, pp.
12
23
.
11.
Fredlund
,
M. D.
,
Wilson
,
G. W.
, and
Fredlund
,
D. G.
,
2002
, “
Use of the Grain-Size Distribution for Estimation of the Soil-Water Characteristic Curve
,”
Can. Geotech. J.
, Vol.
39
, pp.
1103
1117
. https://doi.org/10.1139/t02-049
12.
Gupta
,
S. C.
, and
Larson
,
W. E.
,
1979
, “
Estimating Soil-Water Retention Characteristics from Particle Size Distribution, Organic Matter Percent, and Bulk Density
,”
Water Resourc. Res.
, Vol.
15
, No.
6
, pp.
1633
1635
. https://doi.org/10.1029/WR015i006p01633
13.
Haverkamp
,
R.
, and
Parlange
,
J. Y.
,
1986
, “
Predicting the Water Retention Curve from Particle-Size Distribution: 1. Sandy Soils without Organic Matter
,”
Soil Sci.
, Vol.
142
, pp.
325
339
. https://doi.org/10.1097/00010694-198612000-00001
14.
Huang
,
S. Y.
,
Barbour
,
S. L.
, and
Fredlund
,
D. G.
,
1998
, “
Development and Verification of a Coefficient of Permeability Function for a Deformable Unsaturated Soil
,”
Can. Geotech. J.
, Vol.
35
, No.
3
, pp.
411
425
,. https://doi.org/10.1139/t98-010
15.
Hunt
,
A. G.
, and
Gee
,
G. W.
,
2003
, “
Water Retention of Fractal Soil Models using Continuum Percolation Theory: Tests of Hanford Site Soils
,”
Vadose Zone J.
, Vol.
1
, pp.
252
260
.
16.
Iwamatsu
,
M.
, and
Horii
,
K.
,
1996
, “
Capillary Condensation and Adhesion of Two Wetted Surfaces
,”
J. Colloid Interface Sci.
, Vol.
182
, pp.
400
406
. https://doi.org/10.1006/jcis.1996.0480
17.
Johari
,
A.
,
Habibagahi
,
G.
, and
Ghahramani
,
A.
,
2006
, “
Prediction of Soil-Water Characteristic Curve using Genetic Programming
,”
J. Geotech. Geoenviron. Eng.
, Vol.
132
, No.
5
, pp.
661
665
. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(661)
18.
Kumar
,
S.
, and
Malik
,
R. S.
,
1990
, “
Verification of Quick Capillary Rise Approach for Determining Pore Geometrical Characteristics in Soils of Varying Texture
,”
Soil Sci.
, Vol.
150
, No.
6
, pp.
883
888
. https://doi.org/10.1097/00010694-199012000-00008
19.
Laroussi
,
C. H.
, and
DeBacker
,
L. W.
,
1979
, “
Relations between Geometrical Properties of Glass Bead Media and Their Main ψ(θ) Hysteresis Loops
,”
Soil Sci. Soc. Am. J.
, Vol.
43
, pp.
646
650
. https://doi.org/10.2136/sssaj1979.03615995004300040004x
20.
Letey
,
J.
,
Osborn
,
J.
, and
Pelishek
,
R. E.
,
1962
, “
Measurement of Liquid-Solid Contact Angles in Soil and Sand
,”
Soil Sci.
, Vol.
93
, pp.
149
153
. https://doi.org/10.1097/00010694-196203000-00001
21.
Metzger
,
T.
, and
Tsotsas
,
E.
,
2010
, “
Network Models for Capillary Porous Media: Application to Drying Technology
,”
Chem.-Ing.-Tech.
, Vol.
82
, No.
6
, pp.
869
879
. https://doi.org/10.1002/cite.201000023
22.
Nuth
,
M.
, and
Laloui
,
L.
,
2011
, “
A Model for the Water Retention Behavior of Deformable Soils Including Capillary Hysteresis
,”
Advances in Geotechnical Engineering
, Geotechnical Special Publication No. 211,
Han
J.
and
Alzamora
D. E.
, Eds.,
American Society of Civil Engineers
,
Reston, VA
, pp.
3896
3905
.
23.
Or
,
D.
, and
Tuller
,
M.
,
1999
, “
Liquid Retention and Interfacial Area in Variably Saturated Porous Media: Upscaling from Single-Pore to Sample-Scale Model
,”
Water Resourc. Res.
, Vol.
35
, No.
12
, pp.
3591
3605
. https://doi.org/10.1029/1999WR900262
24.
Rawls
,
W. J.
, and
Brakensiek
,
D. L.
,
1989
, “
Estimation of Soil-Water Retention and Gydrolic Properties
,”
Unsaturated Flow in Hydrologic Modeling Theory and Practice
, Edited by
Morel-Seytoux
H. J.
,
Kluwer Academic Publishers
,
Beltsville, Md.
, pp.
275
300
.
25.
Romero
,
E.
, and
Simms
,
P. H.
,
2008
, “
Microstructure Investigation in Unsaturated Soils: A Review with Special Attention to Contribution of Mercury Intrusion Porosimetry and Environmental Scanning Electron Microscopy
,”
Geotech. Geologic. Eng.
, Vol.
26
, No.
6
, pp.
705
727
. https://doi.org/10.1007/s10706-008-9204-5
26.
Schaap
,
M. G.
,
Leij
,
F. J.
, and
van Genuchten
,
M. Th.
,
1998
, “
Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties
,”
Soil Sci. Soc. Am. J.
, Vol.
62
, pp.
847
855
. https://doi.org/10.2136/sssaj1998.03615995006200040001x
27.
Scheinost
,
A. C.
,
Sinowski
,
W.
, and
Auerswald
,
K.
,
1997
, “
Regionalization of Soil-Water Retention Curves in a Highly Variable Soilscape, I. Developing a New Pedotransfer Function
,”
Geoderma.
, Vol.
78
, pp.
129
143
. https://doi.org/10.2136/sssaj1998.03615995006200040001x
28.
Scheuermann
,
A
, and
Bieberstein
,
A.
,
2007
, “
Determination of the Soils Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution
,”
Experimental Unsaturated Soil Mechanics
,
Schanz
T.
, Ed.,
Springer
,
New York
, pp.
421
433
.
29.
Tuller
,
M.
,
Or
,
D.
, and
Dudley
,
L. M.
,
1999
, “
Adsorption and Capillary Condensation in Porous Media: Liquid Retention and Interfacial Configurations in Angular Pores
,”
Water Resourc. Res.
, Vol.
35
, No.
7
, pp.
1949
1964
. https://doi.org/10.1029/1999WR900098
30.
Tyler
,
S. W.
, and
Wheatcraft
,
S. W.
,
1989
, “
Application of Fractal Mathematics to Soil Water Retention Estimations
,”
Soil Sci. Soc. Am. J.
, Vol.
53
, No.
4
, pp.
987
996
. https://doi.org/10.2136/sssaj1989.03615995005300040001x
31.
van Genuchten
,
M. T.
,
1980
, “
A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Am. J.
, Vol.
44
, pp.
892
890
. https://doi.org/10.2136/sssaj1980.03615995004400050002x
32.
Vereecken
,
H.
,
Maes
,
J.
,
Feyen
,
J.
, and
Darius
,
P.
,
1989
, “
Estimating the Soil Moisture Retention Characteristic from Texture, Bulk Density, and Carbon Content
,”
Soil Sci.
, Vol.
148
, No.
6
, pp.
389
403
. https://doi.org/10.1097/00010694-198912000-00001
33.
Wösten
,
J. H. M.
,
Pachepsky
,
Y. A.
, and
Rawls
,
W. J.
,
2001
, “
Pedotransfer Functions: Bridging the Gap between Available Basic Soil Data and Missing Soil Hydraulic Characteristics
,”
J. Hydrol.
, Vol.
251
, pp.
123
150
. https://doi.org/10.1016/S0022-1694(01)00464-4
This content is only available via PDF.
You do not currently have access to this content.