Abstract

A better understanding of long-term mechanical behavior of over-consolidated clay (OC) is important to numerous geotechnical problems. Most previous experimental studies, however, have used sand or normally consolidated clay (NC); only limited reports of the drained true triaxial test of OC are available. In this paper, an electro-pneumatic (E/P) regulator based automatic control true triaxial apparatus is developed. A mixed boundary loading device designed by Nakai Research Group is used in the apparatus. Unlike other loading devices, the membrane covers not only the vertical but also the horizontal rigid platens, which can apply arbitrary three different principal stresses to the block specimen. The loading pattern that can reduce the corner effect and the interference problem is also analyzed. The method to increase the pressure control precision of the E/P regulator as well as the automatic control system is presented. An extra volume change due to water-absorption of membrane during long time drained test is discussed and a simple solution is proposed. The apparatus is used to study the mechanical properties of NC and OC clays under drained condition. The test results show that the initial stiffness, shear strength and dilatancy are largely influenced by the Lode angle. Furthermore, both the NC and OC clays obey the Matsuoka-Nakai criteria well.

References

1.
ASTM D2435-96,
1996
, “
Standard Test Method for One Dimensional Consolidation Properties of Soil
,”
Annual Book of ASTM Standards
, Vol
4.08
,
ASTM International
,
West Conshohocken, PA
, pp.
1
10
.
2.
Arthur
,
J. R. F.
,
1988
, “
Cubical Devices: Versatility and Constraints
,”
ASTM Spec. Tech Publ.
, Vol.
977
, pp.
743
765
.
3.
Asaoka
,
A.
,
Nakano
,
M.
,
Noda
,
T.
,
Yamada
,
E.
,
Kaneda
,
K.
,
Nakai
,
K.
, and
Seki
,
Y.
,
2002
, “
The influence of Anisotropy of Remolded Clay Developed in Preliminary Consolidation to Undrained Shear Behavior
,”
Proceedings of the 57th Annual Conference of the Japanese Society of Civil Engineers
(CD-ROM),
Hokkaido, Japan
, Japanese Society of Civil Engineering, (in Japanese).
4.
Berre
,
T.
,
1982
, “
Triaxial Testing at the Norwegian Geotechnical Institute
,”
Geotech. Test. J.
, Vol.
5
, No.
1/2
, pp.
3
17
. https://doi.org/10.1520/GTJ10794J
5.
Green
,
G. E.
,
1969
, “
Strength and Compressibility of Granular Materials Under Generalized Strain Conditions
,” Ph.D. thesis,
Univ. of London
, UK.
6.
Hambly
,
E. C.
,
1969
, “
A new triaxial apparatus
”,
Geotechnique
, Vol.
19
, No.
2
, pp.
307
309
. https://doi.org/10.1680/geot.1969.19.2.307
7.
Hinokio
,
M.
,
Nakai
,
T.
,
Hoshikawa
,
T.
, and
Yoshida
,
H.
,
2001
, “
Stress-Strain Behavior of Sand Under Monotonic and Cyclic Loading in General Stress System and Its Elastoplastic Modeling
,”
Soils Found.
, Vol.
41
, No.
3
, pp.
125
140
(in Japanese). https://doi.org/10.3208/sandf.41.3_125
8.
Ibsen
,
L. B.
, and
Praastrup
,
U.
,
2002
, “
The Danish Rigid Boundary True Triaxial Apparatus for Soil Testing
,”
Geotech. Test. J.
, Vol.
25
, No.
3
, pp.
1
12
.
9.
Kirkgard
,
M. M.
, and
Lade
,
P. V.
,
1991
, “
Anisotropy of Normally Consolidated San Francisco Bay Mud
,”
Geotech. Test. J.
, Vol.
14
, No.
3
,
231
246
. https://doi.org/10.1520/GTJ10568J
10.
Kirkgard
,
M. M.
, and
Lade
,
P. V.
,
1993
, “
Anisotropic Three-Dimensional Behavior of a Normally Consolidated Clay
,”
Can. Geotech. J.
, Vol.
30
, pp.
848
858
. https://doi.org/10.1139/t93-075
11.
Lade
,
P. V.
and
Duncan
,
J. M.
,
1973
, “
Cubical Triaxial Tests on Cohesionless Soil
,”
Soil Mech. Found. Eng.
, Vol.
99
, pp.
793
812
(English translation).
12.
Lade
,
P. V.
and
Duncan
,
J. M.
,
1975
, “
Elastoplastic Stress-Strain Theory for Cohesionless Soil
,”
J. Geotech. Engrg. Div.
, Vol.
101
, pp.
1037
1053
.
13.
Lade
,
P. V.
and
Musante
,
H. M.
,
1978
, “
Three Dimensional Behavior of Remolded Clay
,”
J. Geotech. Engrg. Div.
, Vol.
104
, No.
GT2
, pp.
193
209
.
14.
Lambe
,
T. W.
and
Whitman
,
R. V.
,
1969
,
Soil Mechanics
,
Wiley
,
New York
.
15.
Mandeville
,
D.
and
Penumadu
,
D.
,
2004
, “
True Triaxial Testing System for Clay with Proportional-Integral-Differential Control
,”
Geotech. Test. J.
, Vol.
27
, No.
2
, pp.
1
12
.
16.
Matsuoka
,
H.
and
Nakai
,
T.
,
1974
, “
Stress-Deformation and Strength Characteristics of Soil Under Different Principal Stresses
,”
Proc. Japan. Soc. Civ. Eng.
, Vol.
232
, pp.
59
70
.
17.
Mita
,
K. A.
,
Dasari
,
G. R.
, and
Lo
,
K. W.
,
2004
, “
Performance of a Three-Dimensional Hvorslev–Modified Cam Clay Model for Overconsolidated Clay
,”
Int. J. Geomech.
, Vol.
4
, No.
4
, pp.
296
303
. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(296)
18.
Nakai
,
T.
and
Hinokio
,
M.
,
2004
, “
A Simple Elastoplastic Model for Normally and Overconsolidated Soils with Unified Material Parameters
,”
Soils Found.
, No.
44
, No.
2
, pp.
53
70
. https://doi.org/10.3208/sandf.44.2_53
19.
Nakai
,
T.
, and
Matsuoka
,
H.
,
1980
, “
A Unified Law for Soil Shear Behavior Under Three Dimensional Stress Conditions
,”
Proc. Japan. Soc. Civ. Eng.
, Vol.
303
, pp.
65
77
. (in Japanese)
20.
Nakai
,
T.
,
Matsuoka
,
H.
,
Okuno
,
N.
, and
Tsuzuki
,
K.
,
1986
, “
True Triaxial Tests on Normally Consolidated Clay and Analysis of the Observed Shear Behavior Using Elastoplastic Constitutive Models
,”
Soils Found.
, Vol.
26
, No.
4
, pp.
67
78
. https://doi.org/10.3208/sandf1972.26.4_67
21.
Ochiai
,
H.
and
Lade
,
P. V.
,
1983
, “
Three-Dimensional Behavior of Sand with Anisotropic Fabric
,”
J. Geotech. Eng.
, Vol.
109
, No.
10
, pp.
1313
1328
. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
22.
Oka
F.
,
1983
, “
Water and Air Migration of Rubber Membrane in Triaxial Testing
,”
Tsuchi-to-Kiso
, Vol.
37
, No.
7
, pp.
67
68
(in Japanese).
23.
Prashant
,
A.
, and
Penumadu
,
D.
,
2004
, “
Effect of Intermediate Principal Stress on Overconsolidated Kaolin Clay
,”
J. Geotech. Geoenviron. Eng.
, Vol.
130
, No.
3
, pp.
284
292
. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(284)
24.
Prashant
,
A.
, and
Penumadu
,
D.
,
2005
, “
A Laboratory Study of Normally Consolidated Kaolin Clay
,”
Can. Geotech. J.
, Vol.
42
, No.
1
, pp.
27
37
. https://doi.org/10.1139/t04-076
25.
Saada
,
A. S.
and
Townsend
,
F. C.
,
1981
, “
State of the Art: Laboratory Strength Testing of Soils
,”
ASTM Spec. Tech Publ.
, Vol.
740
, pp.
7
77
.
26.
Shibata
,
T.
and
Karube
,
D.
,
1965
, “
Influence of the Variation of the Intermediate Principal Stress on the Mechanical Properties of Normally Consolidated Clays
,”
Proc. 6th Int. Conf. on Soil Mech. and Found. Eng.
,
Montreal, QC, Canada
, Vol.
1
, pp.
359
363
.
27.
Sture
,
S.
and
Desai
,
C. S.
,
1979
, “
Fluid Cushion Truly Triaxial or Multi-Axial Testing Device
,”
Geotech. Test. J.
, Vol.
2
, No.
1
, pp.
20
33
. https://doi.org/10.1520/GTJ10585J
28.
Tatsuoka
,
F.
,
1988
, “
Some Recent Developments in Triaxial Testing Systems for Cohesionless Soils
,”
ASTM Spec. Tech Publ.
, Vol.
977
, pp.
7
67
.
29.
Wang
,
Q.
and
Lade
,
P. V.
, “
Shear Banding in True Triaxial Tests and Its Effect on Failure in Sand
,”
J. Eng. Mech.
, Vol.
127
, No.
8
, pp.
754
761
,
2001
. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:8(754)
30.
Yao
,
Y.-P.
,
Hou
,
W.
, &
Zhou
,
A.-N.
,
2009
, “
UH Model: Three-Dimensional Unified Hardening Model For Overconsolidated Clays
,”
Geotechnique
, Vol.
59
, No.
5
, pp.
451
469
. https://doi.org/10.1680/geot.2007.00029
31.
Yin
,
J.-H.
,
Zhou
W.-H.
,
Kumruzzaman
,
M.
, and
Cheng
C.-M.
,
2010
, “
A Rigid-Flexible Boundary True Triaxial Apparatus for Testing Soils in a Three-Dimensional Stress
,”
Geotech. Test. J.
, Vol.
34
, No.
3
, pp.
1
8
.
This content is only available via PDF.
You do not currently have access to this content.