Abstract

The interface shear behavior of granular materials is central to many engineering applications, including the performance of structures like deep foundations, landfills, and retaining walls. Consequently, it is paramount to understand the behavior of construction material-soil interfaces involved in these applications. Furthermore, it has been shown that the study of interface behavior, in the laboratory and in-situ, can provide robust information about the soil's properties and engineering performance. This paper presented laboratory evaluations of micro and meso-scale shear deformation of medium-sized sands aimed at developing an improved fundamental understanding of granular-continuum stress-strain behavior. A comparison of interface testing results from two different shear directions—axial and torsional—demonstrated that the evolution and progression of shear zone formation was affected differently by changes in the interface surface roughness and particle angularity. In particular, it was observed that torsional shear is a more dilative process that induces a larger degree of soil shearing and is greatly affected by particle angularity. Studies of shear-induced volume changes also revealed that the influence zone for torsional shearing is larger than that for axial shearing, with soil dilation occurring inside the shear zone in contact with the material counterface and soil contraction in a surrounding outer zone. Fundamental micromechanical processes that aim to explain the differences between the behavior of axial and torsional tests are proposed.

References

1.
Alshibli
,
K. A.
and
Alramahi
,
B. A.
,
2006
, “
Microscopic Evaluation of Strain Distribution in Granular Materials During Shear
,”
J. Geotech. Geoenviron. Eng.
, Vol.
132
, No.
1
, pp.
80
91
. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:1(80)
2.
ASTM D5778-12,
2012
:
Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils
, ASTM International, West Conshohocken, PA, www.astm.org.
3.
Bardet
,
J. P.
,
1994
, “
Observations on the Effect of Particle Rotations on the Failure of Idealized Granular Materials
,”
J. Mech. Mater.
, Vol.
18
, No.
2
, pp.
159
182
. https://doi.org/10.1016/0167-6636(94)00006-9
4.
Brumund
,
W. F.
and
Leonards
,
G. A.
,
1973
, “
Experimental Study of Static and Dynamic Friction Between Sand and Typical Construction Materials
,”
ASTM J. Test. Eval.
, Vol.
1
, No.
2
, pp.
162
165
.
5.
DeJong
,
J. T.
,
2001
, “
Investigation of Particulate-Continuum Interface Mechanics and Their Assessment Through a Multi-Friction Sleeve Penetrometer Attachment
,” Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
6.
DeJong
,
J. T.
and
Frost
,
J. D.
,
2002
, “
A Multi-Friction Sleeve Attachment for the Cone Penetrometer
,”
ASTM Geotech. Test. J.
, Vol.
25
, No.
2
, pp.
111
127
.
7.
DeJong
,
J. T.
,
Frost
,
J. D.
, and
Cargill
,
P. E.
,
2001
, “
Effect of Surface Texturing on CPT Friction Sleeve Measurements
,”
J. Geotech. Geoenviron. Eng.
, Vol.
127
, No.
2
, pp.
158
168
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(158)
8.
DeJong
,
J. T.
and
Westgate
,
Z. J.
,
2009
, “
Role of Initial State, Material Properties, and Confinement Condition on Local and Global Soil-Structure Interface Behavior
,”
J. Geotech. Geoenviron. Eng.
, Vol.
135
, No.
11
, pp.
1646
1660
. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:11(1646)
9.
Dove
,
J. E.
and
Fost
,
J. D.
,
1999
, “
Peak Friction Behavior of Smooth Geomembrane–Particle Interfaces
,”
J. Geotech. Geoenviron. Eng.
, Vol.
125
, No.
7
, pp.
544
555
. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(544)
10.
Finno
,
R. J.
,
Harris
,
W. W.
,
Monney
,
M. A.
, and
Viggiani
,
G.
,
1996
, “
Strain Localization and Undrained Steady State of Sand
,”
J. Geotech. Geoenviron. Eng.
, Vol.
122
, No.
6
, pp.
462
473
. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(462)
11.
Frost
,
J. D.
and
DeJong
,
J. T.
,
2005
, “
In Situ Assessment of the Role of Surface Roughness on Interface Response
,”
J. Geotech. Geoenviron. Eng.
, Vol.
131
, No.
4
, pp.
498
511
. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(498)
12.
Frost
,
J. D.
,
Hebeler
,
G. L.
, and
Martinez
,
A.
,
2012
, “
Cyclic Multi–Piezo–Friction Sleeve Penetrometer Testing for Liquefaction Assessment
,”
Proceeding of the Fourth International Conference (ISC’4) on Geotechnical and Geophysical Site Characterization
,
Pernambuco, Brazil
, Sept 15–18, Vol.
1
,
Coutinho
R. Q.
and
Mayne
P. W.
, Eds.,
Taylor & Francis
,
London
, pp.
629
636
.
13.
Frost
,
J. D.
and
Martinez
,
A.
,
2012
, “
Axial-Torsional Multi-Sleeve Friction Penetration System for Lunar Subsurface Studies
,”
Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments
,
Atlanta, GA
, April 15–18,
Zacny
K.
,
Malla
R. B.
and
Binienda
W.
, Eds.,
ASCE
,
Reston, VA
, pp.
335
343
.
14.
Frost
,
J. D.
and
Martinez
,
A.
,
2013
, “
Multi-Sleeve Axial-Torsional-Piezo Friction Penetration System for Subsurface Characterization
,” presented at the
18th ICSMGE International Conference on Soil Mechanics and Geotechnical Engineering
,
Paris, France
, Sept 2–6, Vol.
1
Presses des Ponts
,
Paris, France
, pp.
527
530
.
15.
Ghionna
,
V.
and
Jamiolkowski
,
M.
,
1991
, “
A Critical Appraisal of Calibration Chamber Testing of Sands
,”
Proceedings of the 1st International Symposium on Calibration Chamber Testing (ISOCCT1)
,
Potsdam, NY
, June 28–29,
Elsevier
,
Amsterdam, the Netherlands
, pp.
13
39
.
16.
Hebeler
,
G. L.
,
2005
, “
Multi Scale Investigations of Interface Behavior
,” Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
17.
Hebeler
,
G. L.
,
Frost
,
J. D.
, and
Shinn
,
J. D.
,
2004
, “
Using Textured Friction Sleeves at Sites Traditionally Problematic to CPT
,”
Proceedings of the 2nd International Conference on Site Characterization
,
Porto, Portugal
, Sept 19–22,
IOS Press
,
Amsterdam, the Netherlands
, pp.
693
699
.
18.
Hebeler
,
G. L.
,
Martinez
,
A.
, and
Frost
,
J. D.
,
2015
, “
Shear Zone Evolution of Granular Soils in Contact With Conventional and Textured CPT Friction Sleeves
,”
KSCE J. Civ. Eng.
, (in review).
19.
Iwashita
,
K.
and
Oda
,
M.
,
1998
, “
Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM
,”
J. Eng. Mech.
, Vol.
124
, No.
3
, pp.
285
292
. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)
20.
Iwashita
,
K.
and
Oda
,
M.
,
2000
, “
Micro-Deformation Mechanisms of Shear Banding Processes Based on Modified Distinct Element Method
,”
Powder Technol.
, Vol.
109
, Nos.
1–3
, pp.
192
205
. https://doi.org/10.1016/S0032-5910(99)00236-3
21.
Juang
,
C. R.
and
Holtz
,
R. D.
,
1986
, “
Preparation of Specimens of Noncohesive Material for Mercury Intrusion Porosimetry
,”
Geotech. Test. J.
, Vol.
9
, No.
3
, GTJ10622J.
22.
Martinez
,
A.
and
Frost
,
J. D.
,
2014
, “
Axisymmetric Shearing of Sand-Steel Interfaces Under Axial and Torsional Loading
,” presented at the
GeoCongress 2014
,
Atlanta, GA
, Feb 23–26, Geotechnical Special Publication (GSP) 234,
ASCE
,
Reston, VA
. pp.
644
653
.
23.
Martinez
,
A.
and
Frost
,
J. D.
,
2014
, “
Axial and Torsional Axisymmetric Laboratory Interface Shear Tests for CPT Attachment Studies
,”
Proceedings of the Third International Symposium on Cone Penetration Testing
,
Las Vegas, NV
, May 13–14,
Omnipress
,
Madison, WI
, pp.
179
187
.
24.
Mohamed
,
A.
and
Gutierrez
,
M.
,
2010
, “
Comprehensive Study of the Effect of Rolling Resistance on the Stress-Strain Localization Behavior of Granular Materials
,”
Gran. Matter
, Vol.
12
, No.
5
, pp.
527
541
. https://doi.org/10.1007/s10035-010-0211-x
25.
Oda
,
M.
and
Iwashita
,
K.
,
2000
, “
Study of Coupled Stress and Shear Band Development in Granular Media Based on Numerical Simulation Analyses
,”
Int. J. Eng. Sci.
, Vol.
38
, No.
15
, pp.
1713
1740
. https://doi.org/10.1016/S0020-7225(99)00132-9
26.
Oda
,
M.
,
Konishi
,
J.
, and
Nemat-Nasser
,
S.
,
1982
, “
Experimental Micromechanical Evaluation of Strength of Granular Materials: Effect of Particle Rolling
,”
Mech. Mater.
, Vol.
1
, No.
4
, pp.
269
283
. https://doi.org/10.1016/0167-6636(82)90027-8
27.
Potyondy
,
J. G.
,
1961
, “
Skin Friction Between Various Soils and Construction Materials
,”
Geotechnique
, Vol.
11
, No.
4
, pp.
339
355
. https://doi.org/10.1680/geot.1961.11.4.339
28.
Santamarina
,
J. C.
and
Cho
,
G. C.
,
2003
, “
The Omnipresence of Localizations in Particulate Materials
,”
Proceedings of the International Symposium on Deformation Characteristics of Geomaterials
,
Lyon, France
, Sept 22–24,
Balkema, Rotterdam
,
the Netherlands
, pp.
465
473
.
29.
Scarpelli
,
G.
and
Wood
,
D. N.
,
1982
, “
Experimental Observations of Shear Band Patterns in Direct Shear Tests
,”
IUTAM Conference on Deformation and Failure of Granular Materials
,
Delft, the Netherlands
, Aug 31–Sept 3,
Fernholz
H. H.
and
Krause
E.
, Eds.,
Springer
,
Berlin
, pp.
473
484
.
30.
Thomson
,
E.
,
1930
, “
Quantitative Microscopy Analysis
,”
J. Geol.
, Vol.
38
, No.
3
, pp.
193
222
. https://doi.org/10.1086/623710
31.
Uesugi
,
M.
and
Kishida
,
H.
,
1986
, “
Frictional Resistance at Yield Between Dry Sand and Mild Steel
,”
Soils Found.
, Vol.
26
, No.
4
, pp.
139
149
. https://doi.org/10.3208/sandf1972.26.4_139
32.
Vardoulakis
,
I.
,
1980
, “
Shear Band Inclination and Shear Modulus of Sand in Biaxial Tests
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol.
4
, No.
2
, pp.
103
119
. https://doi.org/10.1002/nag.1610040202
33.
Wang
,
J.
,
Gutierrez
,
M. S.
, and
Dove
,
J. E.
,
2007
, “
Numerical Studies of Shear Banding in Interface Shear Tests Using a New Strain Calculation Method
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol.
31
, No.
12
, pp.
1349
1366
. https://doi.org/10.1002/nag.589
This content is only available via PDF.
You do not currently have access to this content.