Abstract

Seepage direction is crucial for understanding the critical state and development of piping erosion. A stress-controlled apparatus was designed to investigate the piping behavior of cohesionless soil under upward flow condition. The components of the new apparatus included a loading chamber, a vertical and confining loading system, an upstream water supply device, a soil–water separating system, and a water collecting system. The loading chamber provides space for a soil specimen setting and loading. The combination of a vertical and a confining loading system was designed to apply complex stresses to a soil specimen. Under the stresses, the specimen was then eroded by the gradually increasing hydraulic head supplied by the water supply system. The eroded particle and spilling water were collected and detected by the soil–water separating system and the water collecting system. A series of experiments were carried out using the new apparatus. Results demonstrated the repeatability experiments and usefulness of the apparatus. The new apparatus allowed us to investigate the piping behavior under different stress states and hydraulic gradients. With this new apparatus and experiments, we found that lower and high critical hydraulic gradients (CHGs) should be included as the criteria of piping development based on the relationship between the hydraulic gradient and the seepage response. In addition, the stress state on the CHG and the particle erosion rate played important roles in the piping development. The outer pressure on the specimen can retard the development of erosion. In contrast, the hydraulic gradient was found to be positively correlated to the erosion rate. Results also indicated that a specimen would collapse once the amount of eroded small particles exceeds the critical value of 46.5 % of the soil.

References

1.
Bligh
,
W. G.
,
1910
, “
Dams, Barrages and Weirs on Porous Foundations
,”
Eng. News
, Vol.
64
, No.
26
, pp.
708
710
.
2.
Bligh
,
W.
,
1913
, “
Lessons From the Failure of a Weir and Sluices on Porous Foundations
,”
Eng. News
, Vol.
69
, No.
6
, pp.
266
270
.
3.
Chang
,
D. S.
and
Zhang
,
L. M.
,
2011
, “
A Stress-Controlled Erosion Apparatus for Studying Internal Erosion in Soils
,”
Geotech. Test. J.
, Vol.
34
, No.
6
, pp.
579
589
https://doi.org/10.1520/GTJ103889, https://doi.org/10.1520/GTJ103889
4.
Chang
,
D. S.
and
Zhang
,
L. M.
,
2012
, “
Critical Hydraulic Gradients of Internal Erosion Under Complex Stress States
,”
J. Geotech. Geoenviron. Eng.
, Vol.
139
, No.
9
, pp.
1454
1467
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000871, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000871
5.
Chang
,
D. S.
and
Zhang
,
L. M.
,
2013
, “
Extended Internal Stability Criteria for Soils Under Seepage
,”
Soils Found.
, Vol.
53
, No.
4
, pp.
569
583
https://doi.org/10.1016/j.sandf.2013.06.008, https://doi.org/10.1016/j.sandf.2013.06.008
6.
Cividini
,
A.
,
Bonomi
,
S.
,
Vignati
,
G. C.
, and
Gioda
,
G.
,
2009
, “
Seepage-Induced Erosion in Granular Soil and Consequent Settlements
,”
Int. J. Geomech.
, Vol.
9
, No.
4
, pp.
187
194
https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187), https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187)
7.
Cividini
,
A.
and
Gioda
,
G.
,
2004
, “
Finite-Element Approach to the Erosion and Transport of Fine Particles in Granular Soils
,”
Int. J. Geomech.
, Vol.
4
, No.
3
, pp.
191
198
https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(191), https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(191)
8.
Das
,
B. M.
,
2013
,
Advanced Soil Mechanics
,
CRC Press
,
Boca Raton, FL
.
9.
Fleshman
,
M. S.
and
Rice
,
J. D.
,
2013
, “
Constant Gradient Piping Test Apparatus for Evaluation of Critical Hydraulic Conditions for the Initiation of Piping
,”
Geotech. Test. J.
, Vol.
36
, No.
6
, pp.
834
846
https://doi.org/10.1520/GTJ20130066, https://doi.org/10.1520/GTJ20130066
10.
Fleshman
,
M. S.
and
Rice
,
J. D.
,
2014
, “
Laboratory Modeling of the Mechanisms of Piping Erosion Initiation
,”
J. Geotech. Geoenviron. Eng.
Vol.
140
, No.
6
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001106https://doi.org/10.1061/(ASCE)GT.1943-5606.0001106
11.
Foster
,
M.
,
Fell
,
R.
, and
Spannagle
,
M.
,
2000
, “
The Statistics of Embankment Dam Failures and Accidents
,”
Can. Geotech. J.
, Vol.
37
, No.
5
, pp.
1000
1024
https://doi.org/10.1139/t00-030, https://doi.org/10.1139/t00-030
12.
Indraratna
,
B.
and
Radampola
,
S.
,
2002
, “
Analysis of Critical Hydraulic Gradient for Particle Movement in Filtration
,”
J. Geotech. Geoenviron. Eng.
, Vol.
128
, No.
4
, pp.
347
350
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:4(347), https://doi.org/10.1061/(ASCE)1090-0241(2002)128:4(347)
13.
Indraratna
,
B.
and
Vafai
,
F.
,
1997
, “
Analytical Model for Particle Migration Within Base Soil-Filter System
,”
J. Geotech. Geoenviron. Eng.
, Vol.
123
, No.
2
, pp.
100
109
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(100), https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(100)
14.
Kovacs
,
G.
,
1981
,
Seepage Hydraulics
,
Elsevier Scientific Publishing Company
,
New York
.
15.
Lane
,
E.
,
1934
, “
Security From Under-Seepage Masonry Dams on Earth Foundations
,”
Trans. Am. Soc. Civ. Eng.
, Vol.
100
, No.
1
, pp.
1235
1272
.
16.
Liang
,
Y.
,
Wang
,
J.
, and
Liu
,
M.
,
2013
, “
Two-Flow Model for Piping Erosion Based on Liquid-Solid Coupling
,”
J. Central South Univ.
, Vol.
20
, No.
8
, pp.
2299
2306
https://doi.org/10.1007/s11771-013-1737-y, https://doi.org/10.1007/s11771-013-1737-y
17.
Luo
,
Y.
,
Chen
,
L.
,
Xu
,
M.
, and
Huang
,
J.
,
2014
, “
Breaking Mode of Cohesive Homogeneous Earth-Rock-Fill Dam by Overtopping Flow
,”
Nat. Haz.
, Vol.
74
, No.
2
, pp.
527
540
https://doi.org/10.1007/s11069-014-1202-8, https://doi.org/10.1007/s11069-014-1202-8
18.
Luo
,
Y.
,
Qiao
,
L.
,
Liu
,
X.
,
Zhan
,
M.
, and
Sheng
,
J.
,
2013
, “
Hydro-Mechanical Experiments on Suffusion Under Long-Term Large Hydraulic Heads
,”
Nat. Haz.
, Vol.
65
, No.
3
, pp.
1361
1377
https://doi.org/10.1007/s11069-012-0415-y, https://doi.org/10.1007/s11069-012-0415-y
19.
Luo
,
Y.
,
Xi
,
J.
, and
Li
,
X.
,
2013
, “
A New Apparatus for Evaluation of Contact Erosion at the Soil-Structure Interface
,”
Geotech. Test. J.
, Vol.
36
, No.
2
, pp.
256
263
https://doi.org/10.1520/GTJ20120094, https://doi.org/10.1520/GTJ20120094
20.
Moffat
,
R. A.
and
Fannin
,
R. J.
,
2006
, “
A Large Permeameter for Study of Internal Stability in Cohesionless Soils
,”
Geotech. Test. J.
, Vol.
29
, No.
4
, pp.
1
7
https://doi.org/10.1520/GTJ100021, https://doi.org/10.1520/GTJ100021
21.
Richards
,
K. S.
and
Reddy
,
K. R.
,
2007
, “
Critical Appraisal of Piping Phenomena in Earth Dams
,”
Bull. Eng. Geol. Environ.
, Vol.
66
, No.
4
, pp.
381
402
https://doi.org/10.1007/s10064-007-0095-0, https://doi.org/10.1007/s10064-007-0095-0
22.
Richards
,
K. S.
and
Reddy
,
K. R.
,
2010
, “
True Triaxial Piping Test Apparatus for Evaluation of Piping Potential in Earth Structures
,”
Geotech. Test. J.
, Vol.
33
, No.
1
, pp.
83
95
https://doi.org/10.1520/GTJ102246, https://doi.org/10.1520/GTJ102246
23.
Richards
,
K. S.
and
Reddy
,
K. R.
,
2012
, “
Experimental Investigation of Initiation of Backward Erosion Piping in Soils
,”
Géotechnique
, Vol.
62
, No.
10
, pp.
933
942
https://doi.org/10.1680/geot.11.P.058, https://doi.org/10.1680/geot.11.P.058
24.
Skempton
,
A. W.
and
Brogan
,
J. M.
,
1994
, “
Experiments on Piping in Sandy Gravels
,”
Géotechnique
, Vol.
44
, No.
3
, pp.
449
460
https://doi.org/10.1680/geot.1994.44.3.449, https://doi.org/10.1680/geot.1994.44.3.449
25.
Sterpi
,
D.
,
2003
, “
Effects of the Erosion and Transport of Fine Particles Due to Seepage Flow
,”
Int. J. Geomech.
, Vol.
3
, No.
1
, pp.
111
122
https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(111), https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(111)
26.
Terzaghi
,
K. V.
,
1922
, “
Der Grundbruch an Stauwerken und Seine Verhuetung [‘Soil Failure at Barrages and Its Prevention’]
,”
Die Wasserkraft
, Vol.
17
, No.
24
, pp.
445
449
.
27.
Tomlinson
,
S. S.
and
Vaid
,
Y. P.
,
2000
, “
Seepage Forces and Confining Pressure Effects on Piping Erosion
,”
Can. Geotech. J.
, Vol.
37
, No.
1
, pp.
1
13
https://doi.org/10.1139/t99-116, https://doi.org/10.1139/t99-116
28.
Wan
,
C.
and
Fell
,
R.
,
2004
, “
Investigation of Rate of Erosion of Soils in Embankment Dams
,”
J. Geotech. Geoenviron. Eng.
, Vol.
130
, No.
4
, pp.
373
380
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373), https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
29.
Wan
,
C. F.
and
Fell
,
R.
,
2004
, “
Laboratory Tests on the Rate of Piping Erosion Of Soils in Embankment Dams
,”
Geotech. Test. J.
, Vol.
27
, No.
3
, pp.
295
303
https://doi.org/10.1520/GTJ11903, https://doi.org/10.1520/GTJ11903
30.
Wan
,
C.
and
Fell
,
R.
,
2008
, “
Assessing the Potential of Internal Instability and Suffusion in Embankment Dams and Their Foundations
,”
J. Geotech. Geoenviron. Eng.
, Vol.
134
, No.
3
, pp.
401
407
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401), https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401)
This content is only available via PDF.
You do not currently have access to this content.