Abstract

This paper presents an experimental study on the dynamic response of a half-scale geosynthetic-reinforced soil (GRS) bridge abutment system using a shaking table. Experimental design of the model specimen followed established similitude relationships for shaking table tests on reduced-scale models in a 1-g gravitational field, including scaling of model geometry, geosynthetic-reinforcement stiffness, backfill soil modulus, bridge load, and characteristics of the earthquake motions. The 2.7-m-high GRS bridge abutment was constructed using well-graded sand backfill, modular facing blocks, and uniaxial geogrid reinforcements with a vertical spacing of 0.15 m in both the longitudinal and transverse directions. A bridge beam was placed on the GRS bridge abutment at one end and on a concrete support wall resting on a sliding platform off the shaking table at the other end. The GRS bridge abutment system was subjected to a series of input motions in the longitudinal direction. Results indicate that the testing system performed well, and that the GRS bridge abutment experienced small deformations. For two earthquake motions, the maximum incremental residual facing displacement in model scale was 1.0 mm, and the average incremental residual bridge seat settlement in model scale was 1.4 mm, which corresponds to a vertical strain of 0.7 %.

References

1.
Adams
,
M.
,
Nicks
,
J.
,
Stabile
,
T.
,
Wu
,
J.
,
Schlatter
,
W.
, and
Hartmann
,
J.
,
2011
, “
Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide
,”
FHWA-HRT-11-026
,
U.S. DOT
,
Washington, DC
.
2.
ASTM D6637-15
2015
,
Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method
,
ASTM International
,
West Conshohocken, PA
, www.astm.org
3.
Bathurst
,
R.J.
,
Allen
,
T.M.
, and
Walters
,
D.L.
,
2002
, “
Short-Term Strain and Deformation Behavior of Geosynthetic Walls at Working Stress Conditions
,”
Geosyn. Int.
, Vol. 
9
, Nos.
5–6
, pp. 
451
482
, https://doi.org/10.1680/gein.9.0225
4.
Casey
,
J.A.
,
Soon
,
D.
,
Kutter
,
B.
, and
Romstad
,
K.
,
1991
, “
Modeling of Mechanically Stabilized Earth Systems: A Seismic Centrifuge Study
,” presented at the
Geotechnical Engineering Congress
, Boulder, CO, Vol. 
2
,
American Society of Civil Engineers
,
Reston, VA
, pp. 
839
850
.
5.
El-Emam
,
M.M.
and
Bathurst
,
R.J.
,
2004
, “
Experimental Design, Instrumentation and Interpretation of Reinforced Soil Wall Response using a Shaking Table
,”
Int. J. Phys. Model. Geotech.
, Vol. 
4
, No. 
4
, pp. 
13
32
, https://doi.org/10.1680/ijpmg.2004.040402
6.
El-Emam
,
M.M.
and
Bathurst
,
R.J.
,
2005
, “
Facing Contribution to Seismic Response of Reduced-Scale Reinforced Soil Walls
,”
Geosynth. Int.
, Vol. 
12
, No. 
5
, pp. 
215
238
, https://doi.org/10.1680/gein.2005.12.5.215
7.
El-Emam
,
M.M.
and
Bathurst
,
R.J.
,
2007
, “
Influence of Reinforcement Parameters on the Seismic Response of Reduced-Scale Reinforced Soil Retaining Walls
,”
Geotext. Geomembr.
, Vol. 
25
, No. 
1
, pp. 
33
49
, https://doi.org/10.1016/j.geotexmem.2006.09.001
8.
Fox
,
P.J.
,
Andrew
,
A.C.
,
Elgamal
,
A.
,
Greco
,
P.
,
Isaacs
,
D.
,
Stone
,
M.
, and
Wong
,
S.
,
2015
, “
Large Soil Confinement Box for Seismic Performance Testing of Geo-Structures
,”
Geotech. Test. J.
, Vol. 
38
, No. 
1
, pp. 
72
84
, https://doi.org/10.1520/GTJ20140034
9.
Fox
,
P.J.
,
Nye
,
C.J.
,
Morrison
,
T.C.
,
Hunter
,
J.G.
, and
Olsta
,
J.T.
,
2006
, “
Large Dynamic Direct Shear Machine for Geosynthetic Clay Liners
,”
Geotech. Test. J.
, Vol. 
29
, No. 
5
, pp. 
392
400
, https://doi.org/10.1520/GTJ100183
10.
Fox
,
P.J.
,
Rowland
,
M.G.
,
Scheithe
,
J.R.
,
Davis
,
K.L.
,
Supple
,
M.R.
, and
Crow
,
C.C.
,
1997
, “
Design and Evaluation of a Large Direct Shear Machine for Geosynthetic Clay Liners
,”
Geotech. Test. J.
, Vol. 
20
, No. 
3
, pp. 
279
288
, https://doi.org/10.1520/GTJ19970003
11.
Guler
,
E.
and
Enunlu
,
A.K.
,
2009
, “
Investigation of Dynamic Behavior of Geosynthetic Reinforced Soil Retaining Structures under Earthquake Loads
,”
Bull. Earth. Eng.
, Vol. 
7
, No. 
3
, pp. 
737
777
, https://doi.org/10.1007/s10518-009-9106-9
12.
Guler
,
E.
and
Selek
,
O.
,
2014
, “
Reduced-Scale Shaking Table Tests on Geosynthetic-Reinforced Soil Walls with Modular Facing
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
140
, No. 
6
, pp. 
1
11
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001102
13.
Helwany
,
S.M. B.
,
Wu
,
J.T. H.
, and
Kitsabunnarat
,
A.
,
2007
, “
Simulating the Behavior of GRS Bridge Abutments
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
133
, No. 
10
, pp. 
1229
1240
, https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1229)
14.
Helwany
,
S.M. B.
,
Wu
,
J.T. H.
, and
Meinholz
,
P.
,
2012
, “
Seismic Design of Geosynthetic-reinforced Soil Bridge Abutments with Modular Block Facing
,”
NCHRP Web-Only Document 187
,
Transportation Research Board
,
Washington, DC
.
15.
Howard
,
R.W. A.
,
Kutter
,
B.L.
, and
Siddharthan
,
R.
,
1998
, “
Seismic Deformation of Reinforced Soil Centrifuge Models
,” presented at the
Geotechnical Earthquake Engineering and Soil Dynamics III
, Seattle, WA,
American Society of Civil Engineers
,
Reston, VA
, pp. 
446
468
.
16.
Iai
,
S.
,
1989
, “
Similitude for Shaking Table Tests on Soil-Structure-Fluid Models in 1g Gravitational Fields
,”
Soils Found.
, Vol. 
29
, No. 
1
, pp. 
105
118
, https://doi.org/10.3208/sandf1972.29.105
17.
Khosravi
,
A.
,
Ghayoomi
,
M.
,
McCartney
,
J.S.
, and
Ko
,
H.-Y.
,
2010
, “
Impact of Effective Stress on the Dynamic Shear Modulus of Unsaturated Sands
,”
GeoFlorida 2010: Advances in Analysis, Modeling & Design
,
Orlando, FL
,
American Society of Civil Engineers, Reston, VA
, pp. 
410
419
.
18.
Koseki
,
J.
,
Munaf
,
Y.
,
Tatsuoka
,
F.
,
Tateyama
,
M.
,
Kojima
,
K.
, and
Sato
,
T.
,
1998
, “
Shaking and Tilt Table Tests of Geosynthetic-Reinforced Soil and Conventional-Type Retaining Walls
,”
Geosynth. Int.
, Vol. 
5
, Nos.
1–2
, pp. 
73
96
, https://doi.org/10.1680/gein.5.0115
19.
Kramer
,
S.L.
,
1996
,
Geotechnical Earthquake Engineering
,
Prentice Hall
,
Upper Saddle River, NJ
, p. 82.
20.
Krishna
,
A.M.
and
Latha
,
G.M.
,
2009
, “
Seismic Behavior of Rigid-Faced Reinforced Soil Retaining Wall Models: Reinforcement Effect
,”
Geosynth. Int.
, Vol. 
16
, No. 
5
, pp. 
364
373
, https://doi.org/10.1680/gein.2009.16.5.364
21.
Latha
,
G.M.
and
Krishna
,
A.M.
,
2008
, “
Seismic Response of Reinforced Soil Retaining Wall Models: Influence of Backfill Relative Density
,”
Geotext. Geomembr.
, Vol. 
26
, No. 
4
, pp. 
335
349
, https://doi.org/10.1016/j.geotexmem.2007.11.001
22.
Latha
,
G.M.
and
Santhanakumar
,
P.
,
2015
, “
Seismic Response of Reduced-Scale Modular Block and Rigid Faced Reinforced Walls through Shaking Table Tests
,”
Geotext. Geomembr.
, Vol. 
43
, No. 
4
, pp. 
307
316
, https://doi.org/10.1016/j.geotexmem.2015.04.008
23.
Ling
,
H.I.
,
Leshchinsky
,
D.
,
Mohri
,
Y.
, and
Wang
,
J.
,
2012
, “
Earthquake Response of Reinforced Segmental Retaining Walls Backfilled with Substantial Percentage of Fines
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
138
, No. 
8
, pp. 
934
944
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000669
24.
Ling
,
H.I.
,
Leshchinsky
,
D.
,
Wang
,
J.
,
Mohri
,
Y.
, and
Rosen
,
A.
,
2009
, “
Seismic Response of Geocell Retaining Walls: Experimental Studies
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
135
, No. 
4
, pp. 
515
524
, https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(515)
25.
Ling
,
H.I.
,
Mohri
,
Y.
,
Leshchinsky
,
D.
,
Burke
,
C.
,
Matsushima
,
K.
, and
Liu
,
H.
,
2005
, “
Large-Scale Shaking Table Tests on Modular Block Reinforced Soil Retaining Walls
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
131
, No. 
4
, pp. 
465
476
, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(465)
26.
Liu
,
H.
,
Wang
,
X.
, and
Song
,
E.
,
2010
, “
Centrifuge Testing of Segmental Geosynthetic-Reinforced Soil Retaining Walls subjected to Modest Seismic Loading
,” presented at
GeoFlorida 2010, Advances in Analysis, Modeling and Design
, Orlando, FL,
American Society of Civil Engineers
,
Reston, VA
, pp. 
2992
2998
.
27.
Lu
,
N.
,
Godt
,
J.W.
, and
Wu
,
D.T.
,
2010
, “
A Closed‐form Equation for Effective Stress in Unsaturated Soil
,”
Water Resour. Res.
, Vol. 
46
, No. 
5
, W05515, https://doi.org/10.1029/2009WR008646
28.
Matsuo
,
O.
,
Tsutsumi
,
T.
,
Yokoyama
,
K.
, and
Saito
,
Y.
,
1998
, “
Shaking Table Tests and Analyses of Geosynthetic-Reinforced Soil Retaining Walls
,”
Geosynth. Int.
, Vol. 
5
, Nos.
1–2
, pp. 
97
126
, https://doi.org/10.1680/gein.5.0116
29.
Nicks
,
J.E.
,
Adams
,
M.T.
,
Ooi
,
P.S. K.
, and
Stabile
,
T.
,
2013
, “
Geosynthetic Reinforced Soil Performance Testing—Axial Load Deformation Relationships
,”
FHWA-HRT-13-066
,
U.S. DOT
,
Washington, DC
.
30.
Nicks
,
J.E.
,
Esmaili
,
D.
, and
Adams
,
M.T.
,
2016
, “
Deformations of Geosynthetic Reinforced Soil under Bridge Service Loads
,”
Geotext. Geomembr.
, Vol. 
44
, No. 
4
, pp. 
641
653
, https://doi.org/10.1016/j.geotexmem.2016.03.005
31.
Nova-Roessig
,
L.
and
Sitar
,
N.
,
2006
, “
Centrifuge Model Studies of the Seismic Response of Reinforced Soil Slopes
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
132
, No. 
3
, pp. 
388
400
, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(388)
32.
Panah
,
A.K.
,
Yazdi
,
M.
, and
Ghalandarzadeh
,
A.
,
2015
, “
Shaking Table Tests on Soil Retaining Walls Reinforced by Polymeric Strips
,”
Geotext. Geomembr.
, Vol. 
43
, No. 
2
, pp. 
148
161
, https://doi.org/10.1016/j.geotexmem.2015.01.001
33.
Richardson
,
G.N.
and
Lee
,
K.L.
,
1975
, “
Seismic Design of Reinforced Earth Walls
,”
J. Geotech. Eng. Div.
, Vol. 
10
, No. 
12
, pp. 
167
188
.
34.
Runser
,
D.
,
Fox
,
P.J.
, and
Bourdeau
,
P.L.
,
2001
, “
Field Performance of a 17 m-high Reinforced Soil Retaining Wall
,”
Geosynth. Int.
, Vol. 
8
, No. 
5
, pp. 
367
391
, https://doi.org/10.1680/gein.8.0200
35.
Sabermahani
,
M.
,
Ghalandarzadeh
,
A.
, and
Fakher
,
A.
,
2009
, “
Experimental Study on Seismic Deformation Modes of Reinforced-soil Walls
,”
Geotext. Geomembr.
, Vol. 
27
, No. 
2
, pp. 
121
136
, https://doi.org/10.1016/j.geotexmem.2008.09.009
36.
Sakaguchi
,
M.
,
1996
, “
A Study of the Seismic Behavior of Geosynthetic Reinforced Walls in Japan
,”
Geosynth. Int.
, Vol. 
3
, No. 
1
, pp. 
13
30
, https://doi.org/10.1680/gein.3.0051
37.
Siddharthan
,
R.V.
,
Ganeshwara
,
V.
,
Kutter
,
B.L.
,
El-Desouky
,
M.
, and
Whitman
,
R.V.
,
2004
, “
Seismic Deformation of Bar Mat Mechanically Stabilized Earth Walls. I: Centrifuge Tests
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
130
, No. 
1
, pp. 
14
25
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(14)
38.
Trautner
,
C.A.
,
Zheng
,
Y.
,
McCartney
,
J.S.
, and
Hutchinson
,
T.C.
,
2017
, “An Approach for Shake Table Performance Evaluation during Repair and Retrofit Actions,” Earthquake Eng. Struct. Dyn.,
Wiley
,
New York
, pp. 
1
16
, https://doi.org/10.1002/eqe.2942
39.
Vahedifard
,
F.
,
Leshchinsky
,
B.
,
Mortezaei
,
K.
, and
Lu
,
N.
,
2015
, “
Active Earth Pressures for Unsaturated Retaining Structures
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
141
, No. 
11
, 04015048, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001356
40.
Vahedifard
,
F.
,
Leshchinsky
,
B.
,
Sehat
,
S.
, and
Leshchinsky
,
D.
,
2014
, “
Impact of Cohesion on Seismic Design of Geosynthetic-Reinforced Earth Structures
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
140
, No. 
6
, 04014016, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001099.
41.
van Genuchten
,
M.T.
,
1980
, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Am. J.
, Vol. 
44
, No. 
5
, pp. 
892
898
, https://doi.org/10.2136/sssaj1980.03615995004400050002x
42.
Wu
,
J.T. H.
,
Ketchart
,
K.
, and
Adams
,
M.
,
2001
, “
GRS Bridge Piers and Abutments
,”
Report No. FHWA-RD-00-038
,
U.S. DOT
,
Washington, DC
.
43.
Wu
,
J.T. H.
,
Lee
,
K.Z. Z.
,
Helwany
,
S.B.
, and
Ketchart
,
K.
,
2006
, “
Design and Construction Guidelines for Geosynthetic-Reinforced Soil Bridge Abutments with a Flexible Facing
,”
NCHRP Report 556
,
Transportation Research Board
,
Washington, DC
.
44.
Zheng
,
Y.
and
Fox
,
P.J.
,
2016
, “
Numerical Investigation of Geosynthetic-Reinforced Soil Bridge Abutments under Static Loading
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
142
, No. 
5
, 04016004, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001452
45.
Zheng
,
Y.
and
Fox
,
P.J.
,
2017
, “
Numerical Investigation of the Geosynthetic Reinforced Soil-Integrated Bridge System under Static Loading
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
143
, No. 
6
, 04017008, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001665
This content is only available via PDF.
You do not currently have access to this content.