Abstract

Depending on the stress state, mine tailings are generally accepted to be susceptible to static liquefaction. A common method to assess the in situ stress state of tailings in relation to static liquefaction susceptibility involves the use of the state parameter. Because most tailings materials are normally consolidated (NC), this type of assessment requires knowledge about the normal consolidation line (NCL). It has been shown experimentally that the uniqueness of the NCL is vastly different for fine-grained and coarse-grained soils, with clays usually exhibiting a unique NCL and clean sands exhibiting an infinite number of parallel NCLs. Gold tailings, a sandy silt, fall between clays and clean sands, and there are limited experimental data regarding their compression behavior over a range of initial void ratios. This lack of data results in inconsistent interpretation of the uniqueness of the NCL for gold tailings in the industry. This can influence the results of designs and safety evaluations of tailings dams. In this study, a number of oedometer tests were conducted on gold tailings sourced from an active tailings dam in South Africa. Several specimens were prepared at various initial densities and were consolidated in small increments to a high effective stress. The oedometer tests were supplemented with triaxial compression tests, from which a unique critical state line was identified. Across the oedometer and triaxial tests, it was found that the behavior of the NC and overconsolidated samples was consistent with that typically observed for fine-grained soils. Therefore, for practical purposes, it appears that the gold tailings tested can be viewed in a framework with a unique NCL. No significant influence of particle crushing was noted.

References

1.
ASTM International.
2020
.
Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
. ASTM D2435/D2435M-11(2020). West Conshohocken, PA:
ASTM International
, approved April 1,
2020
. https://doi.org/10.1520/D2435_D2435M-11R20
2.
ASTM International.
2017
.
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
. ASTM D2487-17e1. West Conshohocken, PA:
ASTM International
, approved December 15,
2017
. https://doi.org/10.1520/D2487-17E01
3.
ASTM International.
2016
.
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
. ASTM D4253-16e1. West Conshohocken, PA:
ASTM International
, approved March 1,
2016
. https://doi.org/10.1520/D4253-16E01
4.
ASTM International.
2016
.
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density
. ASTM D4254-16. West Conshohocken, PA:
ASTM International
, approved March 1,
2016
. https://doi.org/10.1520/D4254-16
5.
ASTM International.
2014
.
Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer (Superseded)
. ASTM D5550-14. West Conshohocken, PA:
ASTM International
, approved December 15,
2014
. https://doi.org/10.1520/D5550-14
6.
Atkinson
,
J. H.
and
Bransby
P. L.
.
1978
.
The Mechanics of Soils: An Introduction to Critical State Soil Mechanics
.
London
:
McGraw-Hill
.
7.
Bedin
,
J.
,
Schnaid
F.
,
da Foncesa
A. V.
, and
Costa Filho
L. de M.
.
2012
. “
Gold Tailings Liquefaction under Critical State Soil Mechanics
.”
Géotechnique
62
, no. 
3
(March):
263
267
. https://doi.org/10.1680/geot.10.P.037
8.
Been
,
K.
and
Jefferies
M. G.
.
1985
. “
A State Parameter for Sands
.”
Géotechnique
35
, no. 
2
(June):
99
112
. https://doi.org/10.1680/geot.1985.35.2.99
9.
Been
,
K.
,
Jefferies
M. G.
, and
Hachey
J.
.
1991
. “
The Critical State of Sands
.”
Géotechnique
41
, no. 
3
(September):
365
381
. https://doi.org/10.1680/geot.1991.41.3.365
10.
Bishop
,
A. W.
and
Henkel
D. J.
.
1962
.
The Measurement of Soil Properties in the Triaxial Test
. 2nd ed.
London
:
Edward Arnold
.
11.
Burland
,
J. B.
1990
. “
On the Compressibility and Shear Strength of Natural Clays
.”
Géotechnique
40
, no. 
3
(September):
329
378
. https://doi.org/10.1680/geot.1990.40.3.329
12.
Cartwright
,
A.
,
Coop
M. R.
, and
Fourie
A.
.
2022
. “
The Implications of Transitional Behaviour for Tailings
.” In
Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering
, ed.
Raham
M.
and
Jaksa
M.
,
4351
4356
.
Sydney, Australia
:
Australian Geomechanics Society
.
13.
Chang
,
N.
,
Heymann
G.
, and
Clayton
C.
.
2011
. “
The Effect of Fabric on the Behaviour of Gold Tailings
.”
Géotechnique
61
, no. 
3
(March):
187
197
. https://doi.org/10.1680/geot.9.P.066
14.
Coop
,
M. R.
2015
. “
Limitations of a Critical State Framework Applied to the Behaviour of Natural and ‘Transitional’ Soils
.” In
Deformation Characteristics of Geomaterials: Proceedings of Sixth International Symposium on Deformation Characteristics of Geomaterials
, ed.
Rinaldi
V. A.
,
Zeballos
M. E.
, and
Clariá
J. J.
,
115
155
.
Amsterdam, the Netherlands
:
IOS Press
. https://doi.org/10.3233/978-1-61499-601-9-115
15.
Coop
,
M. R.
1990
. “
The Mechanics of Uncemented Carbonate Sands
.”
Géotechnique
40
, no. 
4
(December):
607
626
. https://doi.org/10.1680/geot.1990.40.4.607
16.
Dineen
,
K.
The Influence of Soil Suction on Compressibility and Swelling
.” PhD diss.,
Imperial College London
,
1997
. https://doi.org/10044/1/45469
17.
Fourie
,
A. B.
,
Blight
G. E.
, and
Papageorgiou
G.
.
2001
. “
Static Liquefaction as a Possible Explanation for the Merriespruit Tailings Dam Failure
.”
Canadian Geotechnical Journal
38
, no. 
4
(August):
707
719
. https://doi.org/10.1139/t00-112
18.
Fourie
,
A. B.
and
Papageorgiou
G.
.
2001
. “
Defining an Appropriate Steady State Line for Merriespruit Gold Tailings
.”
Canadian Geotechnical Journal
38
, no. 
4
(August):
695
706
. https://doi.org/10.1139/t00-111
19.
Fourie
,
A. B.
and
Tshabalala
L.
.
2005
. “
Initiation of Static Liquefaction and the Role of K0 Consolidation
.”
Canadian Geotechnical Journal
42
, no. 
3
(June):
892
906
. https://doi.org/10.1139/t05-026
20.
Henkel
,
D. J.
1960
. “
The Relationships between the Effective Stresses and Water Content in Saturated Clays
.”
Géotechnique
10
, no. 
2
(June):
41
54
. https://doi.org/10.1680/geot.1960.10.2.41
21.
International Organization for Standardization.
2020
.
Particle Size Analysis — Laser Diffraction Methods
. ISO 13320:2020. Geneva, Switzerland:
International Organization for Standardization
.
22.
Jefferies
,
M. G.
and
Been
K.
.
2000
. “
Implications for Critical State Theory from Isotropic Compression of Sand
.”
Géotechnique
50
, no. 
4
(August):
419
429
. https://doi.org/10.1680/geot.2000.50.4.419
23.
Jefferies
,
M. G.
and
Been
K.
.
2015
.
Soil Liquefaction: A Critical State Approach
. 2nd ed.
Boca Raton, FL
:
CRC Press
. https://doi/org.10.1201/b19114
24.
Ladd
,
R. S.
1978
. “
Preparing Test Specimens Using Undercompaction
.”
Geotechnical Testing Journal
1
, no. 
1
(March):
16
23
. https://doi.org/10.1520/GTJ10364J
25.
Li
,
W.
The Mechanical Behaviour of Tailings
.” PhD diss.,
City University of Hong Kong
,
2017
.
26.
Narainsamy
,
Y.
and
Jacobsz
S. W.
.
2022
. “
Influence of K0 Consolidation on Yield Undrained Shear Strength in Triaxial Compression
.” In
Eighth International Conference on Tailings Management
, ed.
Qualopana
H.
,
123
130
.
Santiago, Chile
:
Gecamin
.
27.
Nocilla
,
A.
,
Coop
M. R.
, and
Colleselli
F.
.
2006
. “
The Mechanics of an Italian Silt: An Example of ‘Transitional’ Behaviour
.”
Géotechnique
56
, no. 
4
(May):
261
271
. https://doi.org/10.1680/geot.2006.56.4.261
28.
Papageorgiou
,
G.
Liquefaction Assessment and Flume Modelling of the Merriespruit Gold and Bafokeng Platinum Tailings
.” PhD diss.,
University of the Witwatersrand
,
2004
. https://doi.org/10539/23715
29.
Ponzoni
,
E.
,
Nocilla
A.
,
Coop
M. R.
, and
Colleselli
F.
.
2014
. “
Identification and Quantification of Transitional Modes of Behaviour in Sediments of Venice Lagoon
.”
Géotechnique
64
, no. 
9
(July):
694
708
. https://doi.org/10.1680/geot.13.P.166
30.
Reid
,
D.
,
Fourie
A.
,
Ayala
J. L.
,
Dickinson
S.
,
Ochoa-Cornejo
F.
,
Fanni
R.
,
Garfias
J.
, et al.
2021
. “
Results of a Critical State Line Testing Round Robin Programme
.”
Géotechnique
71
, no. 
7
(July):
616
630
. https://doi.org/10.1680/jgeot.19.P.373
31.
Rendulic
,
L.
1936
. “
Relation between Void Ratio and Effective Principal Stresses for a Remoulded, Silty Clay
.” In
Proceedings of the International Conference on Soil Mechanics and Foundation Engineering
, vol. 3,
48
51
.
Cambridge, MA
:
Harvard University
.
32.
Rendulic
,
L.
1937
. “
Ein Grundgesetz der Tonmechanik und Sein Experimenteller Beweis [A Fundamental Law of Clay Mechanics and Its Experimental Proof]
.”
Bauingenieur
18
, no. 
31
(August):
459
467
.
33.
Robertson
,
P. K.
and
Wride
C. E.
.
1998
. “
Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test
.”
Canadian Geotechnical Journal
35
, no. 
3
(June):
442
459
. https://doi.org/10.1139/t98-017
34.
Roscoe
,
K. H.
and
Burland
J. B.
,
1968
. “
On the Generalised Stress-Strain Behaviour of ‘Wet’ Clays
.” In
Engineering Plasticity: Papers for a Conference Held in Cambridge, March 1968
, ed.
Heyman
J.
and
Leckie
F. A.
,
535
609
.
Cambridge, UK
:
Cambridge University Press.
35.
Schnaid
,
F.
,
Bedin
J.
,
da Fonseca
A. J. P.
, and
de Moura Costa Filho
L.
.
2013
. “
Stiffness and Strength Governing the Static Liquefaction of Tailings
.”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
12
(December):
2136
2144
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000924
36.
Schofield
,
A. N.
and
Wroth
C. P.
.
1968
.
Critical State Soil Mechanics
.
New York
:
McGraw-Hill
.
37.
Shipton
,
B.
and
Coop
M. R.
.
2012
. “
On the Compression Behaviour of Reconstituted Soils
.”
Soil and Foundations
52
, no. 
4
(August):
668
681
. https://doi.org/10.1016/j.sandf.2012.07.008
38.
Skempton
,
A. W.
1944
. “
Notes on the Compressibility of Clays
.”
Quarterly Journal of the Geological Society of London
100
, nos. 
1–4
(July):
119
135
. https://doi.org/10.1144/GSL.JGS.1944.100.01-04.08
39.
Sladen
,
J. A.
and
Handford
G.
.
1987
. “
A Potential Systematic Error in Laboratory Testing of Very Loose Sands
.”
Canadian Geotechnical Journal
24
, no. 
3
(August):
462
466
. https://doi.org/10.1139/t87-058
40.
Som
,
N. N.
The Effect of Stress Path on the Deformation and Consolidation of London Clay
.” PhD diss.,
Imperial College London
,
1968
.
41.
Sully
,
T. E.
,
Brouwer
K.
,
Robertson
P. K.
, and
Greenaway
G.
. n.d “
Tailings Improvement by Stress-Densification from Waste Rock Capping
.” Paper presented at the Tailings and Mine Waste Conference, Denver, CO, November
2022
.
42.
Taylor
,
D. W.
1948
.
Fundamentals of Soil Mechanics
.
New York
:
John Wiley & Sons
.
43.
Terzaghi
,
K.
1925
.
Erdbaumechanik auf Bodenphysikalischer Grundlage
[Mechanics of Earthworks Based on Soil Physics]. Wien, Austria:
Franz Deuticke.
44.
Verdugo
,
R.
and
Ishihara
K.
.
1996
. “
The Steady State of Sandy Soils
.”
Soil and Foundations
36
, no. 
2
(June):
81
91
. https://doi.org/10.3208/sandf.36.2_81
45.
Vermeulen
,
N. J.
The Composition and State of Gold Tailings
.” PhD diss.,
University of Pretoria
,
2001
. https://doi.org/2263/23079
46.
Zhang
,
C.
,
Chen
Q.
,
Pan
Z.
, and
Ma
C.
.
2020
. “
Mechanical Behavior and Particle Breakage of Tailings under High Confining Pressure
.”
Engineering Geology
265
(
February
): 105419. https://doi.org/10.1016/j.enggeo.2019.105419
This content is only available via PDF.
You do not currently have access to this content.