Abstract

This paper presents the results of an experimental program carried out in the laboratory aimed at assessing the liquefaction resistance by correlations between longitudinal wave (P-wave) and shear wave (S-wave) velocities (VP and VS) and cyclic stress ratio from triaxial testing (CSRCTx) for different degrees of saturation (Sr). The liquefaction resistance was assessed using a cyclic triaxial apparatus equipped with Hall-effect transducers and bender elements, combining stress-based (large-strain level) and wave-based (small-strain level) approaches. These tests were carried out in soil specimens at relatively high degrees of saturation, which were estimated during testing by VP measurements interpreted using Biot’s theory. The results revealed that, for the same relative density and confinement stress, the S-wave-based approach did not predict the liquefaction resistance well because of the negligible variation in the stress state and soil stiffness for the assessed Sr values, which were above the air-entry value. In turn, the P-wave-based approach effectively predicted the liquefaction resistance increment of the TP-Lisbon sand for different Sr conditions because of the strong dependency of P-wave propagation on the degree of saturation in granular media. This is a consequence of the most relevant factor conditioning the pore pressure buildup in partially saturated sands, e.g., the compressibility of the occluded air bubbles, which can be detected by VP but not by VS.

References

1.
Alba
,
P. D.
,
Baldwin
K.
,
Janoo
V.
,
Roe
G.
, and
Celikkol
B.
.
1984
. “
Elastic-Wave Velocities and Liquefaction Potential
.”
Geotechnical Testing Journal
7
, no. 
2
(June):
77
88
. https://doi.org/10.1520/GTJ10596J
2.
Andrus
,
R. D.
and
Stokoe
K. H.
 II
.
2000
. “
Liquefaction Resistance of Soils from Shear-Wave Velocity
.”
Journal of Geotechnical and Geoenvironmental Engineering
126
, no. 
11
(November):
1015
1025
. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)
3.
Asadi
,
M. B.
,
Orense
R. P.
,
Asadi
M. S.
, and
Pender
M. J.
.
2023
. “
Empirical Assessment of Liquefaction Resistance of Crushable Pumiceous Sand Using Shear Wave Velocity
.”
Journal of Geotechnical and Geoenvironmental Engineering
149
, no. 
2
(February): 04022132. https://doi.org/10.1061/JGGEFK.GTENG-10405
4.
ASTM International.
2016
.
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
. ASTM D4253-16e1. West Conshohocken, PA:
ASTM International
, approved March 1,
2016
. https://doi.org/10.1520/D4253-16E01
5.
ASTM International.
2016
.
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density
. ASTM D4254-16. West Conshohocken, PA:
ASTM International
, approved March 1,
2016
. https://doi.org/10.1520/D4254-16
6.
ASTM International.
2013
.
Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil
(Withdrawn). ASTM D5311M-13. West Conshohocken, PA:
ASTM International
, approved November 1,
2013
.
7.
ASTM International.
2016
.
Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge.
ASTM D6836-16. West Conshohocken, PA:
ASTM International
, approved November 15,
2016
. https://doi.org/10.1520/D6836-16
8.
ASTM International.
2017
.
Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
. ASTM D6913/D6913M-17. West Conshohocken, PA:
ASTM International
, approved April 15, 2017. https://doi.org/10.1520/D6913_D6913M-17
9.
ASTM International.
2014
.
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
(Withdrawn). ASTM D854-14. West Conshohocken, PA:
ASTM International
, approved May 1,
2014
.
10.
Astuto
,
G.
,
Molina-Gómez
F.
,
Bilotta
E.
,
Viana da Fonseca
A.
, and
Flora
A.
.
2023
. “
Some Remarks on the Assessment of P-Wave Velocity in Laboratory Tests for Evaluating the Degree of Saturation
.”
Acta Geotechnica
18
, no. 
2
(February):
777
790
. https://doi.org/10.1007/s11440-022-01610-9
11.
Azeiteiro
,
R. J. N.
,
Coelho
P. A. L. F.
,
Taborda
D. M. G.
, and
Grazina
J. C. D.
.
2017
. “
Critical State–Based Interpretation of the Monotonic Behavior of Hostun Sand
.”
Journal of Geotechnical and Geoenvironmental Engineering
143
, no. 
5
(May): 04017004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001659
12.
Banerjee
,
A.
,
Puppala
A. J.
, and
Hoyos
L. R.
.
2022
. “
Liquefaction Assessment in Unsaturated Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
148
, no. 
9
(September): 04022067. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002851
13.
Biot
,
M. A.
1956
. “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
.”
The Journal of the Acoustical Society of America
28
, no. 
2
(March):
168
178
. https://doi.org/10.1121/1.1908239
14.
Camacho-Tauta
,
J. F.
,
Cascante
G.
,
Viana Da Fonseca
A.
, and
Santos
J. A.
.
2015
. “
Time and Frequency Domain Evaluation of Bender Element Systems
.”
Géotechnique
65
, no. 
7
(July):
548
562
. https://doi.org/10.1680/geot.13.P.206
15.
Cordeiro
,
D.
,
Molina-Gómez
F.
,
Ferreira
C.
,
Rios
S.
, and
Viana da Fonseca
A.
.
2022
. “
Cyclic Liquefaction Resistance of an Alluvial Natural Sand: A Comparison between Fully and Partially Saturated Conditions
.”
Geotechnics
2
, no. 
1
(March):
1
13
. https://doi.org/10.3390/geotechnics2010001
16.
ElGhoraiby
,
M. A.
,
Park
H.
, and
Manzari
M. T.
.
2020
. “
Stress-Strain Behavior and Liquefaction Strength Characteristics of Ottawa F65 Sand
.”
Soil Dynamics and Earthquake Engineering
138
(November): 106292. https://doi.org/10.1016/j.soildyn.2020.106292
17.
Eseller-Bayat
,
E.
,
Gokyer
S.
,
Yegian
M. K.
,
Deniz
R. O.
, and
Alshawabkeh
A.
.
2013
. “
Bender Elements and Bending Disks for Measurement of Shear and Compression Wave Velocities in Large Fully and Partially Saturated Sand Specimens
.”
Geotechnical Testing Journal
36
, no. 
2
(March):
275
282
. https://doi.org/10.1520/GTJ20120024
18.
European Committee for Standardization.
2010
.
Eurocode 8: Design of Structures for Earthquake Resistance, European Committee for Standardization
. EN 1998. Brussels, Belgium:
European Committee for Standardization
.
19.
Ferreira
,
C.
,
Díaz-Durán
F.
,
Viana da Fonseca
A.
, and
Cascante
G.
.
2021
. “
New Approach to Concurrent VS and VP Measurements Using Bender Elements
.”
Geotechnical Testing Journal
44
, no. 
6
(November):
1801
1820
. https://doi.org/10.1520/GTJ20200207
20.
Fioravante
,
V.
and
Giretti
D.
.
2016
. “
Unidirectional Cyclic Resistance of Ticino and Toyoura Sands from Centrifuge Cone Penetration Tests
.”
Acta Geotechnica
11
, no. 
4
(August):
953
968
. https://doi.org/10.1007/s11440-015-0419-3
21.
Flora
,
A.
,
Bilotta
E.
,
Chiaradonna
A.
,
Lirer
S.
,
Mele
L.
, and
Pingue
L.
.
2020
. “
A Field Trial to Test the Efficiency of Induced Partial Saturation and Horizontal Drains to Mitigate the Susceptibility of Soils to Liquefaction
.”
Bulletin of Earthquake Engineering
19
(August):
3835
3864
. https://doi.org/10.1007/s10518-020-00914-z
22.
Foti
,
S.
,
Lai
C. G.
, and
Lancellotta
R.
.
2002
. “
Porosity of Fluid-Saturated Porous Media from Measured Seismic Wave Velocities
.”
Géotechnique
52
, no. 
5
(June):
359
373
. https://doi.org/10.1680/geot.2002.52.5.359
23.
Fredlund
,
D. G.
and
Xing
A.
.
1994
. “
Equations for the Soil-Water Characteristic Curve
.”
Canadian Geotechnical Journal
31
, no. 
4
(August):
521
532
. https://doi.org/10.1139/t94-061
24.
Hardin
,
B. O.
and
Drnevich
V. P.
.
1972
. “
Shear Modulus and Damping in Soils: Design Equations and Curves
.”
Journal of the Soil Mechanics and Foundations Division
98
, no. 
7
(July):
667
692
. https://doi.org/10.1061/JSFEAQ.0001760
25.
Hossain
,
A. M.
,
Andrus
R. D.
, and
Camp
W. M.
 III
.
2013
. “
Correcting Liquefaction Resistance of Unsaturated Soil Using Wave Velocity
.”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
2
(February):
277
287
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000770
26.
Huang
,
Y.
and
Wen
Z.
.
2015
. “
Recent Developments of Soil Improvement Methods for Seismic Liquefaction Mitigation
.”
Natural Hazards
76
, no. 
3
(April):
1927
1938
. https://doi.org/10.1007/s11069-014-1558-9
27.
Ishihara
,
K.
,
Tsuchiya
H.
,
Huang
Y.
, and
Kamada
K.
. n.d “
Keynote Lecture: Recent Studies on Liquefaction Resistance of Sand-Effect of Saturation
.” Paper presented at the Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March
2001
.
28.
Jefferies
,
M.
and
Been
K.
.
2016
.
Soil Liquefaction: A Critical State Approach
, 2nd ed.
Boca Raton, FL
:
CRC Press
29.
Kayen
,
R.
,
Moss
R. E. S.
,
Thompson
E. M.
,
Seed
R. B.
,
Cetin
K. O.
,
Kiureghian
A. D.
,
Tanaka
Y.
, and
Tokimatsu
K.
.
2013
. “
Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential
.”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
3
(March):
407
419
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743
30.
Lee
,
J.-S.
and
Santamarina
J. C.
.
2005
. “
Bender Elements: Performance and Signal Interpretation
.”
Journal of Geotechnical and Geoenvironmental Engineering
131
, no. 
9
(September):
1063
1070
. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
31.
Marasini
,
N. P.
and
Okamura
M.
.
2015
. “
Air Injection to Mitigate Liquefaction under Light Structures
.”
International Journal of Physical Modelling in Geotechnics
15
, no. 
3
(September):
129
140
. https://doi.org/10.1680/jphmg.14.00005
32.
Mele
,
L.
,
Lirer
S.
, and
Flora
A.
.
2022
. “
An Energetic Interpretation of Liquefaction Laboratory Tests on Partially Saturated Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
148
, no. 
10
(October): 04022082. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002881
33.
Molina-Gómez
,
F.
,
Viana da Fonseca
A.
,
Ferreira
C.
, and
Camacho-Tauta
J.
.
2020
. “
Dynamic Properties of Two Historically Liquefiable Sands in the Lisbon Area
.”
Soil Dynamics and Earthquake Engineering
132
(May): 106101. https://doi.org/10.1016/j.soildyn.2020.106101
34.
Molina-Gómez
,
F.
,
Viana da Fonseca
A.
,
Ferreira
C.
, and
Caicedo
B.
.
2023
. “
Improvement of Cyclic Liquefaction Resistance Induced by Partial Saturation: An Interpretation Using Wave-Based Approaches
.”
Soil Dynamics and Earthquake Engineering
167
(April): 107819. https://doi.org/10.1016/j.soildyn.2023.107819
35.
Molina-Gómez
,
F.
and
Viana da Fonseca
A.
.
2021
. “
Key Geomechanical Properties of the Historically Liquefiable TP-Lisbon Sand
.”
Soils and Foundations
61
, no. 
3
(June):
836
856
. https://doi.org/10.1016/j.sandf.2021.03.004
36.
Okamura
,
M.
,
Takebayashi
M.
,
Nishida
K.
,
Fujii
N.
,
Jinguji
M.
,
Imasato
T.
,
Yasuhara
H.
, and
Nakagawa
E.
.
2011
. “
In-Situ Desaturation Test by Air Injection and Its Evaluation through Field Monitoring and Multiphase Flow Simulation
.”
Journal of Geotechnical and Geoenvironmental Engineering
137
, no. 
7
(July):
643
652
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483
37.
Oliveira
,
C. S.
2008
. “
Review of the 1755 Lisbon Earthquake Based on Recent Analyses of Historical Observations
.” In
Historical Seismology: Interdisciplinary Studies of Past and Recent Earthquakes
, vol. 2, eds.
Fréchet
J.
,
Meghraoui
M.
, and
Stucchi
M.
,
261
300
.
Dordrecht, the Netherlands
:
Springer
. https://doi.org/10.1007/978-1-4020-8222-1_13
38.
Porcino
,
D. D.
and
Tomasello
G.
.
2019
. “
Shear Wave Velocity-Based Evaluation of Liquefaction Resistance for Calcareous Sands of Different Origin
.”
Soil Dynamics and Earthquake Engineering
122
(July):
235
247
. https://doi.org/10.1016/j.soildyn.2019.03.019
39.
Robertson
,
P. K.
and
Wride
C. E.
.
1998
. “
Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test
.”
Canadian Geotechnical Journal
35
, no. 
3
(June):
442
459
. https://doi.org/10.1139/t98-017
40.
Santamarina
,
J. C.
,
Rinaldi
V. A.
,
Fratta
D.
,
Klein
K. A.
,
Wang
Y.-H.
,
Cho
G. C.
,
Cascante
G.
, et al.
2005
.
A Survey of Elastic and Electromagnetic Properties of Near-Surface Soils. In Near-Surface Geophysics
, ed.
Butler
D. K.
,
71
88
.
Houston, TX
:
Society of Exploration Geophysicists
. https://doi.org/10.1190/1.9781560801719.ch4
41.
Santamarina
,
J. C.
,
Klein
K. A.
, and
Fam
M. A.
.
2001
.
Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring
.
Hoboken, NJ
:
Wiley
.
42.
Soares
,
M.
and
Viana da Fonseca
A.
.
2016
. “
Factors Affecting Steady State Locus in Triaxial Tests
.”
Geotechnical Testing Journal
39
, no. 
6
(November):
1056
1078
. https://doi.org/10.1520/GTJ20150228
43.
Tokimatsu
,
K.
and
Nakamura
K.
.
1987
. “
A Simplified Correction for Membrane Compliance in Liquefaction Tests
.”
Soils and Foundations
27
, no. 
4
(December):
111
122
. https://doi.org/10.3208/sandf1972.27.4_111
44.
Tokimatsu
,
K.
and
Uchida
A.
.
1990
. “
Correlation between Liquefaction Resistance and Shear Wave Velocity
.”
Soils and Foundations
30
, no. 
2
(June):
33
42
. https://doi.org/10.3208/sandf1972.30.2_33
45.
Tsukamoto
,
Y.
,
Ishihara
K.
,
Nakazawa
H.
,
Kamada
K.
, and
Huang
Y.
.
2002
. “
Resistance of Partly Saturated Sand to Liquefaction with Reference to Longitudinal and Shear Wave Velocities
.”
Soils and Foundations
42
, no. 
6
(December):
93
104
. https://doi.org/10.3208/sandf.42.6_93
46.
Viana da Fonseca
,
A.
,
Ferreira
C.
, and
Fahey
M.
.
2009
. “
A Framework Interpreting Bender Element Tests, Combining Time- Domain and Frequency-Domain Methods
.”
Geotechnical Testing Journal
32
, no. 
2
(March):
91
107
. https://doi.org/10.1520/GTJ100974
47.
Viana da Fonseca
,
A.
,
Cordeiro
D.
, and
Molina-Gómez
F.
.
2021
. “
Recommended Procedures to Assess Critical State Locus from Triaxial Tests in Cohesionless Remoulded Samples
.”
Geotechnics
1
, no. 
1
(September):
95
127
. https://doi.org/10.3390/geotechnics1010006
48.
Viana da Fonseca
,
A.
,
Molina-Gómez
F.
, and
Ferreira
C.
.
2023
. “
Liquefaction Resistance of TP-Lisbon Sand: A Critical State Interpretation Using In Situ and Laboratory Testing
.”
Bulletin of Earthquake Engineering
21
, no. 
2
(January):
767
790
. https://doi.org/10.1007/s10518-022-01577-8
49.
Yamashita
,
S.
,
Kawaguchi
T.
,
Nakata
Y.
,
Mikami
T.
,
Fujiwara
T.
, and
Shibuya
S.
.
2009
. “
Interpretation of International Parallel Test on the Measurement of Gmax Using Bender Elements
.”
Soils and Foundations
49
, no. 
4
(August):
631
650
. https://doi.org/10.3208/sandf.49.631
50.
Yang
,
J.
2002
. “
Liquefaction Resistance of Sand in Relation to P-Wave Velocity
.”
Géotechnique
52
, no. 
4
(May):
295
298
. https://doi.org/10.1680/geot.2002.52.4.295
51.
Yang
,
J.
,
Savidis
S.
, and
Roemer
M.
.
2004
. “
Evaluating Liquefaction Strength of Partially Saturated Sand
.”
Journal of Geotechnical and Geoenvironmental Engineering
130
, no. 
9
(September):
975
979
. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(975)
52.
Yegian
,
M. K.
,
Eseller-Bayat
E.
,
Alshawabkeh
A.
, and
Ali
S.
.
2007
. “
Induced-Partial Saturation for Liquefaction Mitigation: Experimental Investigation
.”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
4
(April):
372
380
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(372)
53.
Yoshimi
,
Y.
,
Tanaka
K.
, and
Tokimatsu
K.
.
1989
. “
Liquefaction Resistance of a Partially Saturated Sand
.”
Soils and Foundations
29
, no. 
3
(September):
157
162
. https://doi.org/10.3208/sandf1972.29.3_157
54.
Youd
,
T. L.
,
Idriss
I. M.
,
Andrus
R. D.
,
Arango
I.
,
Castro
G.
,
Christian
J. T.
, and
Dobry
R.
, et al.
2001
. “
Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
127
, no. 
10
(October):
817
833
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
55.
Zeybek
,
A.
2022
. “
Suggested Method of Specimen Preparation for Triaxial Tests on Partially Saturated Sand
.”
Geotechnical Testing Journal
45
, no. 
2
(March):
355
370
. https://doi.org/10.1520/GTJ20210168
56.
Zeybek
,
A.
and
Madabhushi
G. S. P.
.
2018
. “
Physical Modelling of Air Injection to Remediate Liquefaction
.”
International Journal of Physical Modelling in Geotechnics
18
, no. 
2
(March):
68
80
. https://doi.org/10.1680/jphmg.16.00049
57.
Zhou
,
Y.-G.
and
Chen
Y.-M.
.
2007
. “
Laboratory Investigation on Assessing Liquefaction Resistance of Sandy Soils by Shear Wave Velocity
.”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
8
(August):
959
972
. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(959)
This content is only available via PDF.
You do not currently have access to this content.