Abstract

Previous studies have extensively examined the effects of silt contents and gradations on the cyclic behavior of sand and silt mixtures. However, comparable data on the mixture of sand and gravel are limited because of the experimental challenges of getting reliable testing results from gravel-size particles. Furthermore, in several case histories in which liquefaction occurred, the liquefied soils had experienced initial static shear stress because of the sloping ground conditions or the presence of structures and buildings on the site. The effects of initial static shear stress on the cyclic behavior of clean sands have been widely studied, and some recommendations have been suggested for practical engineers. This research aimed to evaluate the effects of the sand gradation part on the cyclic behavior of two gravelly soils, both with 60 % gravel and 40 % sand but different gradations (well-graded vs. uniformly graded). A total of 26 cyclic triaxial tests were carried out on moist-tamped reconstituted specimens of the tested gravelly soils. The specimens were anisotropically consolidated to assess the effects of initial static shear stress combined with sand gradation on cyclic behaviors of the tested gravelly soils. Results of the tests indicated that the gravelly soil with uniform sands had a greater resistance against liquefaction than the one with well-graded sands. The lower cyclic resistance of the gravelly soil with well-graded sands can be attributed to its lower permeability associated with wider gradation and finer particles of the sand part, leading to higher excess pore pressure buildup during cyclic loading. Moreover, a similar increase in the level of initial static shear stress resulted in an increase in the liquefaction resistance of the gravelly soils, whereas the soil with uniform sands experienced a higher increase than the soil with well-graded sands.

References

1.
Ahmadinezhad
,
A.
,
Jafarzadeh
F.
,
Shahbodagh
B.
,
Hosseinpour
S.
, and
Khorami
S.
.
2023
. “
Development of a Dynamic Hollow Cylinder Apparatus for Investigating the Cyclic Response of Unsaturated Soils Subjected to Stress Anisotropy
.”
Transportation Geotechnics
40
(May): 100968. https://doi.org/10.1016/j.trgeo.2023.100968
2.
ASTM International.
2013
.
Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil
(Withdrawn). ASTM D5311/D5311M-13. West Conshohocken, PA:
ASTM International
, approved November 1,
2013
. https://doi.org/10.1520/D5311_D5311M-13
3.
Aubertin
,
M.
,
Mbonimpa
M.
,
Bussière
B.
, and
Chapuis
R. P.
.
2003
. “
A Model to Predict the Water Retention Curve from Basic Geotechnical Properties
.”
Canadian Geotechnical Journal
40
, no. 
6
(December):
1104
1122
. https://doi.org/10.1139/t03-054
4.
Bertalot
,
D.
and
Brennan
A. J.
.
2015
. “
Influence of Initial Stress Distribution on Liquefaction-Induced Settlement of Shallow Foundations
.”
Géotechnique
65
, no. 
5
(May):
418
428
. https://doi.org/10.1680/geot.SIP.15.P.002
5.
Boulanger
,
R. W.
and
Truman
S. P.
.
1996
. “
Void Redistribution in Sand under Post-earthquake Loading
.”
Canadian Geotechnical Journal
33
, no. 
5
(November):
829
834
. https://doi.org/10.1139/t96-109-329
6.
Boulanger
,
R. W.
,
Seed
R. B.
,
Chan
C. K.
,
Seed
H. B.
, and
Sousa
J. B.
.
1991
.
Liquefaction Behavior of Saturated Sands under Uni-directional and Bi-directional Monotonic and Cyclic Simple Shear Loading, Geotechnical Engineering Report No. UCB/GT/91-08
.
Berkeley, CA
:
University of California
.
7.
Cao
,
Z.
,
Youd
T. L.
, and
Yuan
X.
.
2011
. “
Gravelly Soils that Liquefied during 2008 Wenchuan, China Earthquake, Ms=8.0
.”
Soil Dynamics and Earthquake Engineering
31
, no. 
8
(August):
1132
1143
. https://doi.org/10.1016/j.soildyn.2011.04.001
8.
Chang
,
W.-J.
,
Chang
C.-W.
, and
Zeng
J.-K.
.
2014
. “
Liquefaction Characteristics of Gap-Graded Gravelly Soils in K0 Condition
.”
Soil Dynamics and Earthquake Engineering
56
(January):
74
85
. https://doi.org/10.1016/j.soildyn.2013.10.005
9.
Cubrinovski
,
M.
2019
. “
Some Important Considerations in the Engineering Assessment of Soil Liquefaction
.” In
Proceedings of 13th Australia New Zealand Conference on Geomechanics
,
19
36
.
Sydney, Australia
:
Australian Geomechanics Society
.
10.
Cubrinovski
,
M.
and
Ishihara
K.
.
2002
. “
Maximum and Minimum Void Ratio Characteristics of Sands
.”
Soils and Foundations
42
, no. 
6
(December):
65
78
. https://doi.org/10.3208/sandf.42.6_65
11.
Cubrinovski
,
M.
,
Bray
J. D.
,
de la Torre
C.
,
Olsen
M.
,
Bradley
B.
,
Chiaro
G.
,
Stocks
E.
,
Wotherspoon
L.
, and
Krall
T.
.
2018
. “
Liquefaction-Induced Damage and CPT Characterization of the Reclamations at CentrePort, Wellington
.”
Bulletin of the Seismological Society of America
108
, no. 
3B
(July):
1695
1708
. https://doi.org/10.1785/0120170246
12.
Dash
,
H. K.
and
Sitharam
T. G.
.
2011
. “
Undrained Monotonic Response of Sand–Silt Mixtures: Effect of Nonplastic Fines
.”
Geomechanics and Geoengineering: An International Journal
6
, no. 
1
:
47
58
. https://doi.org/10.1080/17486021003706796
13.
Fioravante
,
V.
,
Giretti
D.
,
Jamiolkowski
M.
, and
Rocchi
G.
.
2012
. “
Triaxial Tests on Undisturbed Gravelly Soils from the Sicilian Shore of the Messina Strait
.”
Bulletin of Earthquake Engineering
10
, no. 
6
(December):
1717
1744
. https://doi.org/10.1007/s10518-012-9374-7
14.
Ghafghazi
,
M.
and
Shuttle
D.
.
2009
. “
Confidence and Accuracy in Determination of the Critical State Friction Angle
.”
Soils and Foundations
49
, no. 
3
(June):
391
395
. https://doi.org/10.3208/sandf.49.391
15.
Ghafghazi
,
M.
,
Shuttle
D. A.
, and
DeJong
J. T.
.
2014
. “
Particle Breakage and the Critical State of Sand
.”
Soils and Foundations
54
, no. 
3
(June):
451
461
. https://doi.org/10.1016/j.sandf.2014.04.016
16.
Haeri
,
S. M.
and
Hamidi
A.
.
2005
. “
Steady State and Liquefaction Characteristics of Gravely Sands
.”
Geotechnical & Geological Engineering
23
, no. 
2
(April):
141
156
. https://doi.org/10.1007/s10706-003-4995-x
17.
Haeri
,
S. M.
and
Nikoonejad
K.
.
2023
. “
Liquefaction Behavior of a Well-Graded Gravelly Soil under Initial Static Shear Stress in Cyclic Triaxial and Simple Shear Conditions
.”
International Journal of Geomechanics
23
, no. 
6
(June): 04023053. https://doi.org/10.1061/IJGNAI.GMENG-8042
18.
Haeri
,
S. M.
and
Shakeri
M. R.
.
2010
. “
Effects of Membrane Compliance on Pore Water Pressure Generation in Gravelly Sands under Cyclic Loading
.”
Geotechnical Testing Journal
33
, no. 
5
:
375
384
. https://doi.org/10.1520/GTJ102433
19.
Haeri
,
S. M.
,
Raeesi
R.
, and
Shahcheraghi
S. A.
.
2016
. “
Elimination of Membrane Compliance Using Fine Sandy Coating on Gravelly Soil Specimens
.” In
Fifth International Conference on Geotechnical Engineering and Soil Mechanics
,
1
7
. Tehran, Iran:
Iranian Geotechnical Society
.
20.
Haeri
,
S. M.
,
Shahcheraghi
S. A.
, and
Sadeghi
H.
.
2019
. “
A New Method for Eliminating Membrane Compliance in Cyclic Triaxial Tests on Gravelly Soils
.”
Scientia Iranica
26
, no. 
6
(November/December):
3181
3195
. https://doi.org/10.24200/sci.2018.5076.1082
21.
Hosseini
,
S. M.
,
Haeri
S. M.
, and
Toll
D. G.
.
2005
. “
Behavior of Gravely Sand Using Critical State Concepts
.”
Scientia Iranica
12
, no. 
2
(April):
167
177
.
22.
Hubler
,
J. F.
,
Athanasopoulos-Zekkos
A.
, and
Zekkos
D.
.
2017
. “
Monotonic, Cyclic, and Postcyclic Simple Shear Response of Three Uniform Gravels in Constant Volume Conditions
.”
Journal of Geotechnical and Geoenvironmental Engineering
143
, no. 
9
(September): 04017043. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001723
23.
Hubler
,
J. F.
,
Athanasopoulos-Zekkos
A.
, and
Zekkos
D.
.
2023
. “
Pore Pressure Generation of Gravelly Soils in Constant Volume Cyclic Simple Shear
.”
Journal of Geotechnical and Geoenvironmental Engineering
149
, no. 
2
(February): 04022130. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002928
24.
Idriss
,
I. M.
and
Boulanger
R. W.
.
2008
.
Soil Liquefaction during Earthquakes, EERI Publication No. MNO-12
.
Oakland, CA
:
Earthquake Engineering Research Institute
.
25.
Ishihara
,
K.
1993
. “
Liquefaction and Flow Failure during Earthquakes
.”
Géotechnique
43
, no. 
3
(September):
351
451
. https://doi.org/10.1680/geot.1993.43.3.351
26.
Ishihara
,
K.
and
Yamazaki
F.
.
1980
. “
Cyclic Simple Shear Tests on Saturated Sand in Multi-directional Loading
.”
Soil and Foundation
20
, no. 
1
(March):
45
59
. https://doi.org/10.3208/sandf1972.20.45
27.
Ishihara
,
K.
,
Verdugo
R. L.
, and
Acacio
A. A.
.
1991
. “
Characterization of Cyclic Behavior of Sand and Post-seismic Stability Analyses
.” in
Proceedings, Ninth Asian Regional Conference on Soil Mechanics and Foundation Engineering
,
45
70
.
Bangkok, Thailand
:
The Southeast Asian Geotechnical Society
.
28.
Ismail
,
M. A.
and
Randolph
M. F.
.
2005
. “
Pseudo Anisotropy Induced by Membrane Compliance in Cemented Granular Soils
.”
Soils and Foundations
45
, no. 
3
:
39
49
. https://doi.org/10.3208/sandf.45.3_39
29.
Jefferies
,
M.
and
Been
K.
.
2015
.
Soil Liquefaction: A Critical State Approach
, 2nd ed.
London
:
CRC Press
.
30.
Kammerer
,
A. M.
Undrained Response of Monterey 0/30 Sand under Multidirectional Cyclic Simple Shear Loading Conditions
.” PhD diss.,
University of California
, Berkeley,
2002
.
31.
Kokusho
,
T.
2000
. “
Correlation of Pore-Pressure B-Value with P-Wave Velocity and Poisson’s Ratio for Imperfectly Saturated Sand or Gravel
.”
Soils and Foundations
40
, no. 
4
(August):
95
102
. https://doi.org/10.3208/sandf.40.4_95
32.
Kokusho
,
T.
2017
.
Innovative Earthquake Soil Dynamics
.
London
:
CRC Press
.
33.
Kokusho
,
T.
,
Hara
T.
, and
Hiraoka
R.
.
2004
. “
Undrained Shear Strength of Granular Soils with Different Particle Gradations
.”
Journal of Geotechnical and Geoenvironmental Engineering
130
, no. 
6
(June):
621
629
. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(621)
34.
Kramer
,
S.
1996
.
Geotechnical Earthquake Engineering
.
Upper Saddle River, NJ
:
Prentice Hall
.
35.
Kwa
,
K. A.
and
Airey
D. W.
.
2017
. “
Effects of Fines on Liquefaction Behavior in Well-Graded Materials
.”
Canadian Geotechnical Journal
54
, no. 
10
(October):
1460
1471
. https://doi.org/10.1139/cgj-2017-0016
36.
Ladd
,
R. S.
1978
. “
Preparing Test Specimens Using Undercompaction
.”
Geotechnical Testing Journal
1
, no. 
1
(March)
16
23
. https://doi.org/10.1520/GTJ10364J
37.
Lo
,
S.-C. R.
,
Chu
J.
, and
Lee
I. K.
.
1989
. “
A Technique for Reducing Membrane Penetration and Bedding Errors
.”
Geotechnical Testing Journal
12
, no. 
4
(December):
311
316
. https://doi.org/10.1520/GTJ10991J
38.
Lopez
,
J. S.
,
Vera-Grunauer
X.
,
Rollins
K.
, and
Salvatierra
G.
.
2018
. “
Gravelly Soil Liquefaction after the 2016 Ecuador Earthquake
.” In
Geotechnical Earthquake Engineering and Soil Dynamics V
,
273
285
.
Reston, VA
:
American Society of Civil Engineers
. https://doi.org/10.1061/9780784481455.027
39.
Manmatharajan
,
M. V.
,
Gill
S.
,
Liu
W.
,
Ingabire
E.-P.
,
Sy
A.
, and
Ghafghazi
M.
.
2023
. “
Effect of Particle Size and Particle Size Distribution on Critical State Loci of Granular Soils
.”
Canadian Geotechnical Journal
60
, no. 
8
(August):
1117
1131
. https://doi.org/10.1139/cgj-2021-0643
40.
Mohamad
,
R.
and
Dobry
R.
.
1986
. “
Undrained Monotonic and Cyclic Triaxial Strength of Sand
.”
Journal of Geotechnical Engineering
112
, no. 
10
(October):
941
958
. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:10(941)
41.
Naesgaard
,
E.
and
Byrne
P. M.
.
2005
. “
Flow Liquefaction Due to Mixing of Layered Deposits
.” In
Proceedings of Geotechnical Earthquake Engineering Satellite Conference
,
103
108
.
Osaka, Japan
:
ISSMGE
.
42.
Nicholson
,
P. G.
,
Seed
R. B.
, and
Anwar
H. A.
.
1993
a. “
Elimination of Membrane Compliance in Undrained Triaxial Testing. I: Measurement and Evaluation
.”
Canadian Geotechnical Journal
30
, no. 
5
(October):
727
738
. https://doi.org/10.1139/t93-065
43.
Nicholson
,
P. G.
,
Seed
R. B.
, and
Anwar
H. A.
.
1993
b. “
Elimination of Membrane Compliance in Undrained Triaxial Testing. II: Mitigation by Injection Compensation
.”
Canadian Geotechnical Journal
30
, no. 
5
(October):
739
746
. https://doi.org/10.1139/t93-066
44.
Nikoonejad
,
K.
and
Imam
R.
.
2022
. “
Bearing Capacity of Model Strip Footing on Unsaturated Very Loose Sand
.” In
Geotechnical Engineering and Sustainable Construction
, edited by
Karkush
M. O.
and
Choudhury
D.
,
255
268
.
Singapore
:
Springer
. https://doi.org/10.1007/978-981-16-6277-5_21
45.
Pires-Sturm
,
A. P.
and
DeJong
J. T.
.
2022
. “
Influence of Particle Size and Gradation on Liquefaction Potential and Dynamic Response
.”
Journal of Geotechnical and Geoenvironmental Engineering
148
, no. 
6
(June): 04022045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002799
46.
Polito
,
C. P.
and
Martin
J. R.
 II
.
2001
. “
Effects of Nonplastic Fines on the Liquefaction Resistance of Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
127
, no. 
5
(May):
408
415
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)
47.
Porcino
,
D.
and
Diano
V.
.
2016
. “
Laboratory Study on Pore Pressure Generation and Liquefaction of Low-Plasticity Silty Sandy Soils during the 2012 Earthquake in Italy
.”
Journal of Geotechnical and Geoenvironmental Engineering
142
, no. 
10
(October): 04016048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001518
48.
Porcino
,
D. D.
and
Diano
V.
.
2017
. “
The Influence of Non-plastic Fines on Pore Water Pressure Generation and Undrained Shear Strength of Sand-Silt Mixtures
.”
Soil Dynamics and Earthquake Engineering
101
(October):
311
321
. https://doi.org/10.1016/j.soildyn.2017.07.015
49.
Porcino
,
D. D.
,
Cicciu
G.
, and
Ghionna
V. N.
.
2004
. “
Laboratory Investigation of the Undrained Cyclic Behavior of a Natural Coarse Sand from Undisturbed and Reconstituted Samples
.” In
Cyclic Behavior of Soils and Liquefaction Phenomena
,
187
192
.
Bochum, Germany
:
A.A. Balkema Publishers
.
50.
Porcino
,
D.
,
Caridi
G.
, and
Ghionna
V. N.
.
2008
. “
Undrained Monotonic and Cyclic Simple Shear Behaviour of Carbonate Sand
.”
Géotechnique
58
, no. 
8
(October):
635
644
. https://doi.org/10.1680/geot.2007.00036
51.
Porcino
,
D. D.
,
Triantafyllidis
T.
,
Wichtmann
T.
, and
Tomasello
G.
.
2022
. “
Using Different State Parameters for Characterizing Undrained Static and Cyclic Behavior of Sand with Non-plastic Fines
.”
Soil Dynamics and Earthquake Engineering
159
(August): 107318. https://doi.org/10.1016/j.soildyn.2022.107318
52.
Rashidian
,
M.
,
Ishihara
K.
,
Kokusho
T.
,
Kanatani
M.
, and
Okamoto
T.
.
1995
. “
Undrained Shearing Behavior of Very Loose Gravelly Soils
.”
Geotechnical Special Publication
, no. 
56
:
77
91
.
53.
Riemer
,
M. F.
and
Seed
R. B.
.
1997
. “
Factors Affecting Apparent Position of Steady-State Line
.”
Journal of Geotechnical and Geoenvironmental Engineering
123
, no. 
3
(March):
281
288
. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(281)
54.
Robertson
,
P. K.
1994
. “
Suggested Terminology for Liquefaction
.” In
Proceedings of the 47th Canadian Geotechnical Conference
,
277
286
.
Halifax, Canada
:
CGS Inc.
55.
Rousé
,
P. C.
2018
. “
Relation between the Critical State Friction Angle of Sands and Low Vertical Stresses in the Direct Shear Test
.”
Soils and Foundations
58
, no. 
5
(October):
1282
1287
. https://doi.org/10.1016/j.sandf.2018.06.005
56.
Sadrekarimi
,
A.
and
Olson
S. M.
.
2011
. “
Critical State Friction Angle of Sands
.”
Géotechnique
61
, no. 
9
(September):
771
783
. https://doi.org/10.1680/geot.9.P.090
57.
Seed
,
H. B.
and
Lee
K. L.
.
1966
. “
Liquefaction of Saturated Sands during Cyclic Loading
.”
Journal of the Soil Mechanics and Foundations Division
92
, no. 
6
(November):
105
134
. https://doi.org/10.1061/JSFEAQ.0000913
58.
Seed
,
H. B.
,
Lee
K. L.
,
Idriss
I. M.
, and
Makdisi
F. I.
.
1975
a. “
The Slides in the San Fernando Dams during the Earthquake of February 9, 1971
.”
Journal of the Geotechnical Engineering Division
101
, no. 
7
(July):
651
688
. https://doi.org/10.1061/AJGEB6.0000178
59.
Seed
,
H. B.
,
Idriss
I. M.
,
Makdisi
F.
, and
Banerjee
N.
.
1975
b.
Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses, Report No. EERC 75-29
.
Berkeley, CA
:
University of California
,
Berkeley
.
60.
Shirkavand
,
D.
and
Fakharian
K.
.
2023
. “
A Comparison of Shear Modulus of Unsaturated Sand in Triaxial and Simple Shear Tests under Different Strains and Suctions
.”
Engineering Geology
315
(March): 106972. https://doi.org/10.1016/j.enggeo.2022.106972
61.
Sirovich
,
L.
1996
. “
Repetitive Liquefaction at a Gravelly Site and Liquefaction in Overconsolidated Sands
.”
Soils and Foundations
36
, no. 
4
(December):
23
34
. https://doi.org/10.3208/sandf.36.4_23
62.
Sivathayalan
,
S.
and
Ha
D.
.
2011
. “
Effect of Static Shear Stress on the Cyclic Resistance of Sands in Simple Shear Loading
.”
Canadian Geotechnical Journal
48
, no. 
10
(October):
1471
1484
. https://doi.org/10.1139/t11-056
63.
Sivathayalan
,
S.
and
Yazdi
A. M.
.
2014
. “
Influence of Strain History on Postliquefaction Deformation Characteristics of Sands
.”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
3
(March): 04013019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001037
64.
Suazo
,
G.
,
Fourie
A.
,
Doherty
J.
, and
Hasan
A.
.
2016
. “
Effects of Confining Stress, Density and Initial Static Shear Stress on the Cyclic Shear Response of Fine-Grained Unclassified Tailings
.”
Géotechnique
66
, no. 
5
(May):
401
412
. https://doi.org/10.1680/jgeot.15.P.032
65.
Sze
,
H. Y.
and
Yang
J.
.
2014
. “
Failure Modes of Sand in Undrained Cyclic Loading: Impact of Sample Preparation
.”
Journal of Geotechnical and Geoenvironmental Engineering
140
, no. 
1
(January):
152
169
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000971
66.
Thevanayagam
,
S.
,
Shenthan
T.
,
Mohan
S.
, and
Liang
J.
.
2002
. “
Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silts
.”
Journal of Geotechnical and Geoenvironmental Engineering
128
, no. 
10
(October):
849
859
. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
67.
Tokimatsu
,
K.
and
Nakamura
K.
.
1987
. “
A Simplified Correction for Membrane Compliance in Liquefaction Tests
.”
Soils and Foundations
27
, no. 
4
(December):
111
122
. https://doi.org/10.3208/sandf1972.27.4_111
68.
Vaid
,
Y. P.
and
Chern
J. C.
.
1983
. “
Effect of Static Shear on Resistance to Liquefaction
.”
Soils and Foundations
23
, no. 
1
(March):
47
60
. https://doi.org/10.3208/sandf1972.23.47
69.
Vaid
,
Y. P.
and
Sivathayalan
S.
.
1996
. “
Static and Cyclic Liquefaction Potential of Fraser Delta Sand in Simple Shear and Triaxial Tests
.”
Canadian Geotechnical Journal
33
, no. 
2
(May):
281
289
. https://doi.org/10.1139/t96-007
70.
Vaid
,
Y. P.
and
Thomas
J.
.
1995
. “
Liquefaction and Postliquefaction Behavior of Sand
.”
Journal of Geotechnical Engineering
121
, no. 
2
(February):
163
173
. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(163)
71.
Wei
,
X.
and
Yang
J.
.
2019
a. “
Cyclic Behavior and Liquefaction Resistance of Silty Sands with Presence of Initial Static Shear Stress
.”
Soil Dynamics and Earthquake Engineering
122
(July):
274
289
. https://doi.org/10.1016/j.soildyn.2018.11.029
72.
Wei
,
X.
and
Yang
J.
.
2019
b. “
Characterizing the Effects of Fines on the Liquefaction Resistance of Silty Sands
.”
Soils and Foundations
59
, no. 
6
(December):
1800
1812
. https://doi.org/10.1016/j.sandf.2019.08.010
73.
Wichtmann
,
T.
,
Steller
K.
, and
Triantafyllidis
T.
.
2020
. “
On the Influence of the Sample Preparation Method on Strain Accumulation in Sand under High-Cyclic Loading
.”
Soil Dynamics and Earthquake Engineering
131
(April): 106028. https://doi.org/10.1016/j.soildyn.2019.106028
74.
Wu
,
J.
,
Kammerer
A. M.
,
Riemer
M. F.
,
Seed
R. B.
, and
Pestana
J. M.
.
2004
. “
Laboratory Study of Liquefaction Triggering Criteria
.” In
13th World Conference on Earthquake Engineering
, Paper No. 2580. Tokyo:
International Association for Earthquake Engineering
.
75.
Yang
,
J.
and
Sze
H. Y.
.
2011
a. “
Cyclic Behavior and Resistance of Saturated Sand under Non-symmetrical Loading Conditions
.”
Géotechnique
61
, no. 
1
(January):
59
73
. https://doi.org/10.1680/geot.9.P.019
76.
Yang
,
J.
and
Sze
H. Y.
.
2011
b. “
Cyclic Strength of Sand under Sustained Shear Stress
.”
Journal of Geotechnical and Geoenvironmental Engineering
137
, no. 
12
(December):
1275
1285
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000541
77.
Yang
,
S. L.
,
Sandven
R.
, and
Grande
L.
.
2006
. “
Steady-State Lines of Sand–Silt Mixtures
.”
Canadian Geotechnical Journal
43
, no. 
11
(November):
1213
1219
. https://doi.org/10.1139/t06-069
78.
Yoshimi
,
Y.
and
Oh-oka
H.
.
1975
. “
Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sand
.”
Soils and Foundations
15
, no. 
3
(September):
27
40
. https://doi.org/10.3208/sandf1972.15.3_27
79.
Yoshimine
,
M.
,
Robertson
P. K.
, and
Wride
C. E.
.
1999
. “
Undrained Shear Strength of Clean Sands to Trigger Flow Liquefaction
.”
Canadian Geotechnical Journal
36
, no. 
5
(November):
891
906
. https://doi.org/10.1139/t99-047
80.
Youd
,
T. L.
,
Idriss
I. M.
,
Andrus
R. D.
,
Arango
I.
,
Castro
G.
,
Christian
J. T.
, and
Dobry
R.
, et al.
2001
. “
Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
127
, no. 
10
(October):
817
833
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
This content is only available via PDF.
You do not currently have access to this content.