ABSTRACT

This study estimates the CO2 sequestration capacity of Malmi clay stabilized with various recycled binders tested in laboratory conditions. Carbonation experiments were performed on stabilized samples using an autoclave and a carbonation chamber. Results revealed that the rate of carbonation differs significantly when carbonation is performed using a carbonation chamber or an autoclave. After 1 day in room temperature, the carbonated-stabilized samples were kept in the carbonation chamber for 13 days or in the autoclave for 5 days. Additionally, the reference samples were cured for 14 and 28 days to estimate the effect of CO2 sequestration capacity on curing time. Further, thermogravimetric analysis (TGA) was used to measure the CO2 intake. The findings indicated that the CO2 sequestration capacity of carbonated-stabilized soil for the recycled binders ranged from 2.8 % to 4.1 % of dry mass of the mixture. The CO2 intake was found to be 4.1 %, 3.5 %, 3.0 %, and 2.8 %/dry mass of the mixture for cement type I (CEMI), cement type III (CEMIII), GTC (gypsum + slaked lime + CEMIII), and biomass fly ash + CEMII (BFA + CEMII) stabilized clay, respectively. Ultimately, GTC binder was found to have the greatest potential to be carbon negative. The present study shows that it may be potential to create stabilization technique, which can be carbon negative especially by using recycled binder materials.

References

1.
Bobicki
,
E. R.
,
Q.
Liu
,
Z.
Xu
, and
H.
Zeng
.
2012
. “
Carbon Capture and Storage Using Alkaline Industrial Wastes
.”
Progress in Energy and Combustion Science
38
, no. 
2
(April):
302
320
. https://doi.org/10.1016/j.pecs.2011.11.002
2.
Cai
,
G.
and
S.
Liu
.
2017
. “
Compaction and Mechanical Characteristics and Stabilization Mechanism of Carbonated Reactive MgO-Stabilized Silt
.”
KSCE Journal of Civil Engineering
21
, no. 
7
(November):
2641
2654
. https://doi.org/10.1007/s12205-017-1145-1
3.
Fasihnikoutalab
,
M. H.
,
A.
Asadi
,
C.
Unluer
,
B. K.
Huat
,
R. J.
Ball
, and
S.
Pourakbar
.
2017
. “
Utilization of Alkali-Activated Olivine in Soil Stabilization and the Effect of Carbonation on Unconfined Compressive Strength and Microstructure
.”
Journal of Materials in Civil Engineering
29
, no. 
6
(June):
06017002
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001833
4.
Hov
,
S.
,
F.
Falle
, and
P.
Paniagua
.
2022
. “
Optimization of Laboratory Molding Techniques for Nordic Dry Deep Mixing
.”
Geotechnical Testing Journal
45
, no. 
4
(July/August):
837
854
. https://doi.org/10.1520/GTJ20210245
5.
Hov
,
S.
,
P.
Paniagua
,
C.
Sætre
,
H.
Rueslåtten
,
I.
Størdal
,
M.
Mengede
, and
C.
Mevik
.
2022
. “
Lime-Cement Stabilisation of Trondheim Clays and Its Impact on Carbon Dioxide Emissions
.”
Soils and Foundations
62
, no. 
3
(June):
101162
. https://doi.org/10.1016/j.sandf.2022.101162
6.
Intergovernmental Panel on Climate Change (IPCC)
.
2019
.
2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories
.
Cambridge, UK
:
Cambridge University Press
.
7.
Kaliyavaradhan
,
S. K.
and
T.-C.
Ling
.
2017
. “
Potential of CO2 Sequestration through Construction and Demolition (C&D) Waste—An Overview
.”
Journal of CO2 Utilization
20
(July):
234
242
. https://doi.org/10.1016/j.jcou.2017.05.014
8.
Karlsrud
,
K.
,
A.
Eggen
,
Ø.
Nerland
, and
T.
Haugen
.
2015
. “
Some Norwegian Experiences Related to Use of Dry-Mixing Methods to Improve Stability of Excavations and Natural Slopes in Soft Clay
.” In
Proceedings of Deep Mixing 2015 Conference
,
87
100
.
San Francisco, CA
:
Deep Foundations Institute
.
9.
Kivi
,
E.
Ground Improvement Methods in Finland—Usage Rates and Carbon Footprint
” (in Finnish). Master’s thesis,
Aalto University
,
2021
.
10.
Lackner
,
K. S.
,
C. H.
Wendt
,
D. P.
Butt
,
E. L.
Joyce
Jr.
, and
D. H.
Sharp
.
1995
. “
Carbon Dioxide Disposal in Carbonate Minerals
.”
Energy
20
, no. 
11
:
1153
1170
. https://doi.org/10.1016/0360-5442(95)00071-N
11.
Lahtinen
,
P.
,
H.
Jyrävä
, and
K.
Kuusipuro
.
1999
. “
Development of Binders for Organic Soils
.” In
Dry Mix Methods for Deep Soil Stabilization
, 1st ed., edited by
H.
Bredenberg
,
G.
Holm
, and
B. B.
Broms
,
109
114
.
Rotterdam, the Netherlands
:
A. A. Balkema
.
12.
Liu
,
S. Y.
,
G. H.
Cai
,
G. Y.
Du
,
L.
Wang
,
J. S.
Li
, and
X. C.
Qian
.
2021
. “
Field Investigation of Shallow Soft-Soil Highway Subgrade Treated by Mass Carbonation Technology
.”
Canadian Geotechnical Journal
58
, no. 
1
(January):
97
113
. https://doi.org/10.1139/cgj-2020-0008
13.
Madlool
,
N. A.
,
R.
Saidur
,
M. S.
Hossain
, and
N. A.
Rahim
.
2011
. “
A Critical Review on Energy Use and Savings in the Cement Industries
.”
Renewable and Sustainable Energy Reviews
15
, no. 
4
(May):
2042
2060
. https://doi.org/10.1016/j.rser.2011.01.005
14.
McLellan
,
B. C.
,
R. P.
Williams
,
J.
Lay
,
A.
van Riessen
, and
G. D.
Corder
.
2011
. “
Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement
.”
Journal of Cleaner Production
19
, nos. 
9–10
(June–July):
1080
1090
. https://doi.org/10.1016/j.jclepro.2011.02.010
15.
Mohammed
,
A. M. A.
,
N. Z.
Mohd Yunus
,
M. A.
Hezmi
,
A. S. A.
Rashid
, and
S.
Horpibulsuk
.
2021
. “
Carbonated Ground Granulated Blast Furnace Slag Stabilising Brown Kaolin
.”
Environmental Science and Pollution Research
28
, no. 
40
(October):
57308
57320
. https://doi.org/10.1007/s11356-021-14718-4
16.
Shillaber
,
C. M.
,
J. K.
Mitchell
, and
J. E.
Dove
.
2016
. “
Energy and Carbon Assessment of Ground Improvement Works. I: Definitions and Background
.”
Journal of Geotechnical and Geoenvironmental Engineering
142
, no. 
3
(March):
04015083
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001410
17.
Simpson
,
B.
and
F.
Tatsuoka
.
2008
. “
Geotechnics: The Next 60 Years
.”
Géotechnique
58
, no. 
5
(June):
357
368
. https://doi.org/10.1680/geot.2008.58.5.357
18.
Tamilselvi Dananjayan
,
R. R. T.
,
P.
Kandasamy
, and
R.
Andimuthu
.
2016
. “
Direct Mineral Carbonation of Coal Fly Ash for CO2 Sequestration
.”
Journal of Cleaner Production
112
, Part
5
(January):
4173
4182
. https://doi.org/10.1016/j.jclepro.2015.05.145
19.
Tiwari
,
S. K.
,
B. S.
Giri
,
V.
Thivaharan
,
A. K.
Srivastava
,
S.
Kumar
,
R. P.
Singh
,
R.
Kumar
, and
R. S.
Singh
.
2020
. “
Sequestration of Simulated Carbon Dioxide (CO2) Using Churning Cementations Waste and Fly-Ash in a Thermo-stable Batch Reactor (TSBR)
.”
Environmental Science and Pollution Research International
27
, no. 
22
(August):
27470
27479
. https://doi.org/10.1007/s11356-019-07342-w
20.
Ukwattage
,
N. L.
,
P. G.
Ranjith
, and
S. H.
Wang
.
2013
. “
Investigation of the Potential of Coal Combustion Fly Ash for Mineral Sequestration of CO2 by Accelerated Carbonation
.”
Energy
52
(April):
230
236
. https://doi.org/10.1016/j.energy.2012.12.048
21.
Unluer
,
C.
and
A.
Al-Tabbaa
.
2013
. “
Impact of Hydrated Magnesium Carbonate Additives on the Carbonation of Reactive MgO Cements
.”
Cement and Concrete Research
54
(December):
87
97
. https://doi.org/10.1016/j.cemconres.2013.08.009
22.
Ural
,
N.
2021
. “
The Significance of Scanning Electron Microscopy (SEM) Analysis on the Microstructure of Improved Clay: An Overview
.”
Open Geosciences
13
, no. 
1
(January):
197
218
. https://doi.org/10.1515/geo-2020-0145
23.
Yi
,
Y.
,
M.
Liska
,
A.
Akinyugha
,
C.
Unluer
, and
A.
Al-Tabbaa
.
2013
a. “
Preliminary Laboratory-Scale Model Auger Installation and Testing of Carbonated Soil-MgO Columns
.”
Geotechnical Testing Journal
36
, no. 
3
(May):
384
393
. https://doi.org/10.1520/GTJ20120052
24.
Yi
,
Y.
,
M.
Liska
,
C.
Unluer
, and
A.
Al-Tabbaa
.
2013
b. “
Carbonating Magnesia for Soil Stabilization
.”
Canadian Geotechnical Journal
50
, no. 
8
(August):
899
905
. https://doi.org/10.1139/cgj-2012-0364
25.
Yu
,
C.
,
C.
Cui
,
Y.
Wang
,
J.
Zhao
, and
Y.
Wu
.
2021
. “
Strength Performance and Microstructural Evolution of Carbonated Steel Slag Stabilized Soils in the Laboratory Scale
.”
Engineering Geology
295
(December):
106410
. https://doi.org/10.1016/j.enggeo.2021.106410
26.
Zevenhoven
,
R.
,
S.
Teir
, and
S.
Eloneva
.
2008
. “
Heat Optimisation of a Staged Gas-Solid Mineral Carbonation Process for Long-Term CO2 Storage
.”
Energy
33
, no. 
2
(February):
362
370
. https://doi.org/10.1016/j.energy.2007.11.005
You do not currently have access to this content.