Abstract

Porous asphalt (PA) is a bituminous mixture that is preferred in surface wearing courses because of its comparably better skid resistance and reduced spraying and hydroplaning risk, leading to improved driving quality compared with dense-graded hot mix asphalt mixtures. Use of recycled materials with satisfactory strength and durability properties as an aggregate in PA mixtures would provide both economic and environmental benefits because natural resources would be preserved, and transportation costs, and consequently CO2 emissions, would be reduced, and the stockpiled recycled material would be employed instead of occupying scarce landscape. However, because of the high air void content and exposure of a larger surface area to atmosphere in PA mixtures, the potential for raveling and rapid aging for any proposed aggregate material needs to be evaluated carefully. This study was conducted to investigate the performance of ferrochrome slag (FS), a by-product of ferrochromium industries, as an aggregate in porous asphalt. Air voids content, permeability, particle loss, tensile strength, and moisture susceptibility were measured on three different gradations of FS and the results were compared with the limits given in construction specifications. The gradation of the slag aggregates along with the bitumen content played a key role on performance of the PA mixtures. The FS specimens prepared at an optimum bitumen content of 6.5 % performed significantly better than limestone (LS) aggregate specimens at the same gradation; the air void content, permeability, and tensile strength of the FS mixtures were 2 %, 50 %, and 16 % higher than the LS mixtures, respectively.

References

1.
AASHTO.
2014
.
Standard Method for Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage
. AASHTO T 283 (2014). Washington, DC:
American Association of State and High Transportation Officials
.
2.
AASHTO.
2017
.
Bulk Specific Gravity (Gmb) of Compacted Hot Mix Asphalt (HMA) Using Paraffin-Coated Specimens
. AASHTO T 275-17 (2017). Washington, DC:
American Association of State and High Transportation Officials
.
3.
Acharya
,
P. K.
and
Patro
S. K.
.
2016
. “
Use of Ferrochrome Ash (FCA) and Lime Dust in Concrete Preparation
.”
Journal of Cleaner Production
131
(September):
237
246
. https://doi.org/10.1016/j.jclepro.2016.05.042
4.
Afonso
,
M. L.
,
Dinis-Almeida
M.
, and
Fael
C. S.
.
2019
. “
Characterization of the Skid Resistance and Mean Texture Depth in a Permeable Asphalt Pavement
.”
IOP Conference Series: Materials Science and Engineering
471
, no. 
2
(February): 022029. https://doi.org/10.1088/1757-899X/471/2/022029
5.
Al-Jabri
,
K.
,
Shoukry
H.
,
Khalil
I. S.
,
Nasir
S.
, and
Hassan
H. F.
.
2018
. “
Reuse of Waste Ferrochrome Slag in the Production of Mortar with Improved Thermal and Mechanical Performance
.”
Journal of Materials in Civil Engineering
30
, no. 
8
(August): 04018152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002345
6.
Alvarez
,
A. E.
,
Martin
A. E.
,
Estakhri
C. K.
,
Button
J. W.
,
Glover
C. J.
, and
Jong
S. H.
.
2006
.
Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses. Report No. FHWA/TX-06/0-5262-1
.
Austin, TX
:
Texas Department of Transportation
.
7.
Aman
,
M. Y.
,
Shahadan
Z.
, and
Tamin
N. R. M.
.
2015
. “
A Comparative Study on Properties of Malaysian Porous Asphalt Mixes with Different Bitumen Contents
.”
Research Journal of Applied Sciences, Engineering and Technology
9
, no. 
10
(April):
797
806
. https://doi.org/10.19026/rjaset.9.2581
8.
Arulrajah
,
A.
,
Piratheepan
J.
,
Ali
M. M. Y.
, and
Bo
M. W.
.
2012
. “
Geotechnical Properties of Recycled Concrete Aggregate in Pavement Sub-base Applications
.”
Geotechnical Testing Journal
35
, no. 
5
:
743
751
. https://doi.org/10.1520/GTJ103402
9.
Asmatulaev
,
B. A.
,
Asmatulaev
R. B.
,
Abdrasulova
A. S.
,
Levintov
B. L.
,
Vitushchenko
M. F.
, and
Stolyarskiiv
O. A.
.
2007
. “
Using Blast-Furnace Slag in Road Construction
.”
Steel in Translation
37
, no. 
8
(August):
722
725
. https://doi.org/10.3103/S0967091207080189
10.
ASTM International.
2015
.
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate
. ASTM C128-15. West Conshohocken, PA:
ASTM International
, approved January 1,
2015
. https://doi.org/10.1520/C0128-15
11.
ASTM International.
2017
.
Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures
. ASTM D6931-17 (2017). West Conshohocken, PA:
ASTM International
, approved July 1,
2017
. https://doi.org/10.1520/D6931-17
12.
ASTM International.
2017
.
Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate
. ASTM D5821-13 (2017). West Conshohocken, PA:
ASTM International
, approved October 1,
2017
. https://doi.org/10.1520/D5821-13R17
13.
ASTM International.
2018
.
Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester
. ASTM D92-18. West Conshohocken, PA:
ASTM International
, approved July 1,
2018
. https://doi.org/10.1520/D0092-18
14.
ASTM International.
2018
.
Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate
. ASTM C88M-18 (2018). West Conshohocken, PA:
ASTM International
, approved August 1,
2018
. https://doi.org/10.1520/C0088_C0088M-18
15.
ASTM International.
2019
.
Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate
. ASTM D4791-19 (2019). West Conshohocken, PA:
ASTM International
, approved November 1,
2019
. https://doi.org/10.1520/D4791-19
16.
ASTM International.
2019
.
Standard Test Method for Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures
. ASTM D2041/D2041M-19 (2019). West Conshohocken, PA:
ASTM International
, approved June 1,
2019
. https://doi.org/10.1520/D2041_D2041M-19
17.
ASTM International.
2020
.
Standard Test Method for Penetration of Bituminous Materials
. ASTM D5/D5M-20 (2020). West Conshohocken, PA:
ASTM International
, approved May 1,
2020
. https://doi.org/10.1520/D0005_D0005M-20
18.
ASTM International.
2020
.
Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
. ASTM C131M-20. West Conshohocken, PA:
ASTM International
, approved February 15,
2020
. https://doi.org/10.1520/C0131_C0131M-20
19.
ASTM International.
2020
.
Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus)
. ASTM D36/D36M-14(2020). West Conshohocken, PA:
ASTM International
, approved May 1,
2020
. https://doi.org/10.1520/D0036_D0036M-14R20
20.
ASTM International.
2021
.
Standard Practice for Open-Graded Friction Course (OGFC) Asphalt Mixture Design
. ASTM D7064/D7064M-21 (2021). West Conshohocken, PA:
ASTM International
, approved May 1,
2021
. https://doi.org/10.1520/D7064_D7064M-21
21.
ASTM International.
2021
.
Standard Test Method for Elastic Recovery of Asphalt Materials by Ductilometer
. ASTM D6084/D6084M-21 (2021). West Conshohocken, PA:
ASTM International
, approved November 1,
2021
. https://doi.org/10.1520/D6084_D6084M-21
22.
ASTM International.
2021
.
Standard Test Method for Specific Gravity and Density of Semi-solid Asphalt Binder (Pycnometer Method)
. ASTM D70/D70M-21. West Conshohocken, PA:
ASTM International
, updated January 1,
2021
. https://doi.org/10.1520/D0070_D0070M-21
23.
Cetín
,
A. Y.
,
Aydilek
A. H.
, and
Cetín
B.
.
2014
. “
Preventing Swelling and Decreasing Alkalinity of Steel Slags Used in Highway Infrastructures
.”
Transportation Research Record
2401
, no. 
1
(January):
52
57
. https://doi.org/10.3141/2401-06
24.
Cetín
,
A.
and
Oral
G.
.
2022
. “
Performance Evaluation of Porous Asphalt Mixtures Modified with Basalt Fiber
.”
Revista De La Construcción. Journal of Construction
21
, no. 
1
:
93
104
.
25.
Cui
,
P.
,
Wu
S.
,
Xiao
Y.
,
Niu
Y.
,
Yuan
G.
, and
Lin
J.
.
2019
. “
3D Reconstruction of Moisture Damage Resulted Volumetric Changes in Porous Asphalt Mixture
.”
Construction and Building Materials
228
(
December
): 116658. https://doi.org/10.1016/j.conbuildmat.2019.08.039
26.
Das
,
S. K.
,
Tripathi
A. K.
,
Kandi
S. K.
,
Mustakim
M.
,
Bhoi
B.
, and
Rajput
P.
.
2023
. “
Ferrochrome Slag: A Critical Review of Its Properties, Environmental Issues and Sustainable Utilization
.”
Journal of Environmental Management
326
, Part A: 116674. https://doi.org/10.1016/j.jenvman.2022.116674
27.
Dayioğlu
,
A.
,
Kaya
Z.
,
Cetin
B.
, and
Aydilek
A. H.
.
2014
. “
Influence of Laboratory Compaction Method on Mechanical and Hydraulic Characteristics of Unbound Granular Base Materials
.”
Road Materials and Pavement Design
15
, no. 
1
:
220
235
. https://doi.org/10.1080/14680629.2013.869505
28.
Dondi
,
G.
,
Mazzotta
F.
,
Lantieri
C.
,
Cuppi
F.
,
Vignali
V.
, and
Sangiovanni
C.
.
2021
. “
Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements
.”
Materials
14
, no. 
2
(January): 345. https://doi.org/10.3390/ma14020345
29.
Fares
,
A. I.
,
Sohel
K. M. A.
,
Al-Jabri
K.
, and
Al-Mamun
A.
.
2021
. “
Characteristics of Ferrochrome Slag Aggregate and Its Uses as a Green Material in Concrete – A Review
.”
Construction and Building Materials
294
(August): 123552. https://doi.org/10.1016/j.conbuildmat.2021.123552
30.
Florida Department of Transportation.
2015
.
Measurement of Water Permeability of Compacted Asphalt Paving Mixtures
.
Spec. FM 5-565
.
Gainesville, FL
:
Florida Department of Transportation
.
31.
Gökalp
,
I.
and
Uz
V. E.
.
2020
. “
The Effect of Aggregate Type and Gradation on Fragmentation Resistance Performance: Testing and Evaluation Based on Different Standard Test Methods
.”
Transportation Geotechnics
22
(March): 100300. https://doi.org/10.1016/j.trgeo.2019.100300
32.
Gökalp
,
I.
,
Uz
V. E.
,
Saltan
M.
, and
Tutumluer
E.
.
2018
. “
Technical and Environmental Evaluation of Metallurgical Slags as Aggregate for Sustainable Pavement Layer Applications
.”
Transportation Geotechnics
14
(March):
61
69
. https://doi.org/10.1016/j.trgeo.2017.10.003
33.
Gupta
,
A.
,
Lastra-Gonzalez
P.
,
Castro-Fresno
D.
, and
Rodriguez-Hernandez
J.
.
2021
. “
Laboratory Characterization of Porous Asphalt Mixtures with Aramid Fibers
.”
Materials
14
, no. 
8
(April): 1935. https://doi.org/10.3390/ma14081935
34.
Hagos
,
E. T.
The Effect of Aging on Binder Properties of Porous Asphalt Concrete
.” PhD diss.,
Delft University of Technology
,
2008
.
35.
Hamzah
,
M. O.
,
Kakar
M. R.
,
Quadri
S. A.
, and
Valentin
J.
.
2014
. “
Quantification of Moisture Sensitivity of Warm Mix Asphalt Using Image Analysis Technique
.”
Journal of Cleaner Production
68
(April):
200
208
. https://doi.org/10.1016/j.jclepro.2013.12.072
36.
Hassan
,
H.
,
Wu
K.
,
Huang
W.
,
Chen
S.
,
Zhang
Q.
,
Xie
J.
, and
Cai
X.
.
2021
. “
Study on the Influence of Aggregate Strength and Shape on the Performance of Asphalt Mixture
.”
Construction and Building Materials
294
(August): 123599. https://doi.org/10.1016/j.conbuildmat.2021.123599
37.
Highway Technical Specifications (HTS).
2013
.
Porous Asphalt, Sec. 417
.
Ankara, Turkey
:
General Directorate of Highways
.
38.
Huber
,
G.
2000
.
NCHRP Synthesis 284: Performance Survey on Open-Graded Friction Course Mixes. OMB No. 0704-0188
.
Washington, DC
:
Transportation Research Board
.
39.
Islam
,
M. Z.
,
Sohel
K. M. A.
,
Al-Jabri
K.
, and
Al Harthy
A.
.
2021
. “
Properties of Concrete with Ferrochrome Slag as a Fine Aggregate at Elevated Temperatures
.”
Case Studies in Construction Materials
15
(December): e00599. https://doi.org/10.1016/j.cscm.2021.e00599
40.
Li
,
X.
and
He
Z.
.
2020
. “
Prediction Model for Connected Voids Ratio of the Porous Asphalt Mixture
.”
Advances in Civil Engineering
2020
(February): 3760435. https://doi.org/10.1155/2020/3760435
41.
Lind
,
B. B.
,
Fällman
A. M.
, and
Larsson
L. B.
.
2001
. “
Environmental Impact of Ferrochrome Slag in Road Construction
.”
Waste Management
21
, no. 
3
(June):
255
264
. https://doi.org/10.1016/S0956-053X(00)00098-2
42.
Mabui
,
D. S.
,
Tjaronge
M. W.
,
Adisasmita
S. A.
, and
Pasra
M.
.
2020
. “
Performance of Porous Asphalt Containing Modified Buton Asphalt and Plastic Waste
.”
International Journal of GEOMATE
18
, no. 
65
(January):
118
123
. https://doi.org/10.21660/2020.65.67196
43.
Mahamaya
,
M.
and
Das
S. K.
.
2020
. “
Characterization of Ferrochrome Slag as a Controlled Low-Strength Structural Fill Material
.”
International Journal of Geotechnical Engineering
14
, no. 
3
:
312
321
. https://doi.org/10.1080/19386362.2018.1448527
44.
Maharaj
,
C.
,
White
D.
,
Maharaj
R.
, and
Morin
C.
.
2017
. “
Re-use of Steel Slag as an Aggregate to Asphaltic Road Pavement Surface
.”
Cogent Engineering
4
, no. 
1
: 1416889. https://doi.org/10.1080/23311916.2017.1416889
45.
Mallick
,
R. B.
,
Kandhal
P. S.
,
Cooley
L. A.
, and
Watson
D. E.
.
2000
.
Design Construction and Performance of New-Generation Open-Graded Friction Courses. NCAT Report 2000–01
.
Auburn, AL
:
National Center for Asphalt Technology
.
46.
Manju
,
R.
,
Sathya
S.
, and
Sheema
K.
.
2017
. “
Use of Plastic Waste in Bituminous Pavement
.”
International Journal of ChemTech Research
10
, no. 
8
:
804
811
.
47.
Mansour
,
T. N.
and
Putman
B. J.
.
2013
. “
Influence of Aggregate Gradation on the Performance Properties of Porous Asphalt Mixtures
.”
Journal of Materials in Civil Engineering
25
, no. 
2
(February):
281
288
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000602
48.
Masri
,
K. A.
,
Awang
H.
,
Putra Jaya
R.
,
Ali
M. I.
,
Ramli
N. I.
, and
Arshad
A. K.
.
2019
. “
Moisture Susceptibility of Porous Asphalt Mixture with Nano Silica Modified Asphalt Binder
.”
IOP Conference Series: Earth and Environmental Science
244
, no. 
1
: 012028. https://doi.org/10.1088/1755-1315/244/1/012028
49.
Mohamed Abdullah
,
N. A.
,
Abdul Hassan
N.
,
Mohd Shukry
N. A.
,
Mahmud
M. Z. H.
,
Putrajaya
R.
,
Hainin
M. R.
, and
Yusoff
N. I.
.
2016
. “
Evaluating Potential of Diatomite as Anti-clogging Agent for Porous Asphalt Mixture
.”
Jurnal Teknologi
78
, no. 
7-2
:
105
111
.
50.
Mohiud Din
,
I.
and
Mir
M. S.
.
2020
. “
Study of Warm Mix Asphalt Using Reclaimed Asphalt Pavement and Copper Slag: A Review
.”
Canadian Journal of Civil Engineering
47
, no. 
4
(April):
355
362
. https://doi.org/10.1139/cjce-2019-009
51.
Molenaar
,
A. A. A.
,
Meerkerk
A. J. J.
,
Miradi
M.
, and
van der Steen
T.
.
2006
. “
Performance of Porous Asphalt Concrete
.” In
2006 Journal of the Association of Asphalt Paving Technologists: From the Proceedings of the Technical Sessions
75
,
1053
1094
.
Lino Lakes, MN
:
Association of Asphalt Paving Technologists
.
52.
Moriyoshi
,
A.
,
Jin
T.
,
Nakai
T.
,
Ishikawa
H.
,
Tokumitsu
K.
, and
Kasahara
A.
.
2014
. “
Construction and Pavement Properties after Seven Years in Porous Asphalt with Long Life
.”
Construction and Building Materials
50
(January):
401
413
. https://doi.org/10.1016/j.conbuildmat.2013.09.023
53.
Mroueh
,
U.-M.
,
Eskola
P.
, and
Laine-Ylijoki
J.
.
2001
. “
Life-Cycle Impacts of the Use of Industrial By-Products in Road and Earth Construction
.”
Waste Management
21
, no. 
3
(June):
271
277
. https://doi.org/10.1016/S0956-053X(00)00100-8
54.
Nakanishi
,
H.
,
Hamzah
M. O.
,
Hasan
M. R. M.
,
Karthigeyan
P.
, and
Shaur
O.
.
2019
. “
Mix Design and Application of Porous Asphalt Pavement Using Japanese Technology
.”
IOP Conference Series: Materials Science and Engineering
512
, no. 
1
: 012026. https://doi.org/10.1088/1757-899X/512/1/012026
55.
Niemelä
,
P.
and
Kauppi
M.
. n.d “
Production, Characteristics and Use of Ferrochromium Slags
.” Paper presented at INFACON XI, New Delhi, India, February 18–21,
2007
.
56.
Panda
,
C. R.
,
Mishra
K. K.
,
Panda
K. C.
,
Nayak
B. D.
, and
Nayak
B. B.
.
2013
. “
Environmental and Technical Assessment of Ferrochrome Slag as Concrete Aggregate Material
.”
Construction and Building Materials
49
(December):
262
271
. https://doi.org/10.1016/j.conbuildmat.2013.08.002
57.
Pariser
,
H. H.
,
Backeberg
N. R.
,
Masson
O. C. M.
, and
Bedder
J. C. M.
.
2018
. “
Changing Nickel and Chromium Stainless Steel Markets - A Review
.”
The Journal of the Southern African Institute of Mining and Metallurgy
118
(June):
563
568
. https://doi.org/10.17159/2411-9717/2018/v118n6a1
58.
Pasetto
,
M.
and
Baldo
N.
.
2017
. “
Dissipated Energy Analysis of Four-Point Bending Test on Asphalt Concretes Made with Steel Slag and RAP
.”
International Journal of Pavement Research and Technology
10
, no. 
5
(September):
446
453
. https://doi.org/10.1016/j.ijprt.2017.07.004
59.
Phummiphan
,
I.
,
Horpibulsuk
S.
,
Rachan
R.
,
Arulrajah
A.
,
Shen
S.-L.
, and
Chindaprasirt
P.
.
2018
. “
High Calcium Fly Ash Geopolymer Stabilized Lateritic Soil and Granulated Blast Furnace Slag Blends as a Pavement Base Material
.”
Journal of Hazardous Materials
341
(January):
257
267
. https://doi.org/10.1016/j.jhazmat.2017.07.067
60.
Qian
,
Z. D.
,
Ren
H. S.
, and
Wei
Y.
.
2021
. “
Effect of Aggregate Gradation and Morphology on Porous Asphalt Mixture Performance
.”
Journal of Materials in Civil Engineering
33
, no. 
5
(May): 04021055. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003655
61.
Rahman
,
I. A.
,
Hamdam
H.
,
Mujahid
A.
, and
Zaidi
A.
.
2009
. “
Assessment of Recycled Aggregate Concrete
.”
Modern Applied Science
3
, no. 
10
(October):
47
54
.
62.
Raposeiras
,
A. C.
,
Vargas-Cerón
A.
,
Movilla-Quesada
D.
, and
Castro-Fresno
D.
.
2016
. “
Effect of Copper Slag Addition on Mechanical Behavior of Asphalt Mixes Containing Reclaimed Asphalt Pavement
.”
Construction and Building Materials
119
(August):
268
276
. https://doi.org/10.1016/j.conbuildmat.2016.05.081
63.
Reddy
,
N. G.
and
Rao
B. H.
.
2022
. “
Physico-chemical and Mechanical Characterization of Ferrochrome Slag Aggregates for Utilization as a Road Material
.” In
Advances in Transportation Geotechnics IV. Vol. 164
, edited by
Tutumluer
E.
,
Nazarian
S.
,
Al-Qadi
I.
, and
Qamhia
I. I.
,
645
657
.
Cham, Switzerland
:
Springer
. https://doi.org/10.1007/978-3-030-77230-7_49
64.
Rondón-Quintana
,
H. A.
,
Ruge-Cárdenas
J. C.
, and
de Farias
M. M.
.
2019
. “
Behavior of Hot-Mix Asphalt Containing Blast Furnace Slag as Aggregate: Evaluation by Mass and Volume Substitution
.”
Journal of Materials in Civil Engineering
31
, no. 
2
(February): 04018364. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002574
65.
Sahu
,
N.
,
Biswas
A.
, and
Kapure
G. U.
.
2016
. “
A Short Review on Utilization of Ferrochromium Slag
.”
Mineral Processing and Extractive Metallurgy Review
37
, no. 
4
:
211
219
. https://doi.org/10.1080/08827508.2016.1168415
66.
Salih
,
S. M.
and
Sravana
P.
.
2013
. “
Effect of Flakiness Index on Bituminous Mixes
.”
International Journal of Scientific Engineering and Technology Research
2
, no. 
10
(September):
1023
1030
.
67.
Salihpasaoglu
,
F.
and
Sengul
O.
.
2020
. “
Use of Waste Ferrochromium Slag as Aggregate in Concrete
.”
Journal of Material Cycles and Waste Management
22
, no. 
6
(November):
2048
2058
. https://doi.org/10.1007/s10163-020-01091-6
68.
Sathwik
,
S. R.
,
Sanjith
J.
, and
Sudhakar
G. N.
.
2016
. “
Development of High Strength Concrete Using Ferrochrome Slag Aggregate as Replacement to Coarse Aggregate
.”
American Journal of Engineering Research
5
, no. 
9
:
83
87
.
69.
Sengoz
,
B.
,
Onsori
A.
, and
Topal
A.
.
2014
. “
Effect of Aggregate Shape on the Surface Properties of Flexible Pavement
.”
KSCE Journal of Civil Engineering
18
, no. 
5
(June):
1364
1371
. https://doi.org/10.1007/s12205-014-0516-0
70.
Shukry
,
N. A. M.
,
Hassan
N. A.
,
Abdullah
M. E.
,
Hainin
M. R.
,
Yusoff
N. I. M.
,
Jaya
R. P.
, and
Mohamed
A.
.
2018
. “
Effect of Various Filler Types on the Properties of Porous Asphalt Mixture
.”
IOP Conference Series: Materials Science and Engineering
.
342
, no. 
1
: 012036. https://doi.org/10.1088/1757-899X/342/1/012036
71.
Sung
,
C. Y.
and
Kim
Y. I.
.
2012
. “
Void Ratio and Durability Properties of Porous Polymer Concrete Using Recycled Aggregate with Binder Contents for Permeability Pavement
.”
Journal of Applied Polymer Science
126
, no. 
S2
(November):
E338
E348
. https://doi.org/10.1002/app.36974
72.
Wu
,
S. P.
,
Xue
Y. J.
,
Ye
Q. S.
, and
Chen
Y. C.
.
2007
. “
Utilization of Steel Slag as Aggregates for Stone Mastic Asphalt (SMA) Mixtures
.”
Building and Environment
42
, no. 
7
(July):
2580
2585
. https://doi.org/10.1016/j.buildenv.2006.06.008
73.
Xiao
,
F.
,
Su
N.
,
Yao
S.
,
Amirkhanian
S.
, and
Wang
J.
.
2019
. “
Performance Grades, Environmental and Economic Investigations of Reclaimed Asphalt Pavement Materials
.”
Journal of Cleaner Production
211
(February):
1299
1312
. https://doi.org/10.1016/j.jclepro.2018.11.126
74.
Xu
,
B.
,
Chen
J.
,
Li
M.
,
Cao
D.
,
Ping
S.
,
Zhang
Y.
, and
Wang
W.
.
2016
. “
Experimental Investigation of Preventive Maintenance Materials of Porous Asphalt Mixture Based on High Viscosity Modified Bitumen
.”
Construction and Building Materials
124
(October):
681
689
. https://doi.org/10.1016/j.conbuildmat.2016.07.122
75.
Yaragal
,
S. C.
,
Chethan Kumar
B.
, and
Jitin
C.
.
2020
. “
Durability Studies on Ferrochrome Slag as Coarse Aggregate in Sustainable Alkali Activated Slag/Fly Ash Based Concretes
.”
Sustainable Materials and Technologies
23
(April): e00137. https://doi.org/10.1016/j.susmat.2019.e00137
76.
Yi
,
H.
,
Xu
G.
,
Cheng
H.
,
Wang
J.
,
Wan
Y.
, and
Chen
H.
.
2012
. “
An Overview of Utilization of Steel Slag
.”
Procedia Environmental Sciences
16
:
791
801
. https://doi.org/10.1016/j.proenv.2012.10.108
77.
Yılmaz
,
A.
and
Karaşahin
M.
.
2010
. “
Mechanical Properties of Ferrochromium Slag in Granular Layers of Flexible Pavements
.”
Materials and Structures
43
, no. 
3
(April):
309
317
. https://doi.org/10.1617/s11527-009-9490-2
78.
Yılmaz
,
A.
and
Karaşahin
M.
.
2013
. “
Compressive Strength of Cement-Bound Base Layers Containing Ferrochromium Slag
.”
Turkish Journal of Engineering & Environmental Sciences
37
(February):
247
258
. https://doi.org/10.3906/muh-1204-10
79.
Zelić
,
J.
2005
. “
Properties of Concrete Pavements Prepared with Ferrochromium Slag as Concrete Aggregate
.”
Cement and Concrete Research
35
, no. 
12
(December):
2340
2349
. https://doi.org/10.1016/j.cemconres.2004.11.019
80.
Zhang
,
F.
,
Li
J.
,
Yaseen
M.
,
Han
M.
,
Yin
Y.
, and
Yang
S.
.
2018
. “
Preparation Methods and Performance of Modified Asphalt Using Rubber–Plastic Alloy and Its Compounds
.”
Journal of Materials in Civil Engineering
30
, no. 
8
(August): 04018163. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002356
This content is only available via PDF.
You do not currently have access to this content.