Abstract

Black cotton soils are extremely problematic because they are susceptible to large volume changes with variation in moisture contents. These soils are conventionally stabilized with ordinary portland cement and lime, but the production/utilization of these traditional stabilizers is highly energy intensive, involves quarrying, and emits large quantities of carbon dioxide (CO2) into the atmosphere. Geopolymer is a promising alternative to these stabilizers because it provides high strength, consumes low energy, and emits low CO2 during synthesis and application. In this study, geopolymers synthesized from coal gangue (waste generated during coal mining) and ground granulated blast furnace slag (GGBS; by-product from the iron and steel industry) binders were evaluated for treating black cotton soil. A mixture of sodium silicate and sodium hydroxide is used as an alkaline activator solution for geopolymerization. An attempt is further made to identify the optimal dosages of geopolymer by evaluating the strength and durability characteristics of geopolymer-treated black cotton soil mixtures. X-ray diffraction and scanning electron microscopy were further conducted to distinguish the mineralogical and microstructural changes that occurred because of geopolymerization. From this study, it is found that using coal gangue alone as a precursor in geopolymer is good at improving the strength of black cotton soil but observed to be weak in durability. Hence, an attempt is further made to synthesize a better-performing geopolymer with a combination of GGBS and coal gangue, i.e., effective in both strength and durability aspects. Optimal geopolymer identified in this study can be a sustainable alternative to traditional stabilizers in improving black cotton soils for geotechnical subgrade applications.

References

1.
Abdullah
,
M. S.
and
Ahmad
F.
. “
Effect of Alkaline Activator to Fly Ash Ratio for Geopolymer Stabilized Soil
.”
MATEC Web of Conferences
97
(
2017
): 01012. https://doi.org/10.1051/matecconf/20179701012
2.
Aboulayt
,
A.
,
Jaafri
R.
,
Samouh
H.
,
Cherki El Idrissi
A.
,
Roziere
E.
,
Moussa
R.
, and
Loukili
A.
.
2018
. “
Stability of a New Geopolymer Grout: Rheological and Mechanical Performances of Metakaolin-Fly Ash Binary Mixtures
.”
Construction and Building Materials
181
(August):
420
436
. https://doi.org/10.1016/j.conbuildmat.2018.06.025
3.
Alam
,
S.
,
Das
S. K.
, and
Rao
B. H.
.
2019
. “
Strength and Durability Characteristic of Alkali Activated GGBS Stabilized Red Mud as Geo-material
.”
Construction and Building Materials
211
(June):
932
942
. https://doi.org/10.1016/j.conbuildmat.2019.03.261
4.
ARA.
2004
.
Guide for Mechanistic-Empirical Design on New and Rehabilitated Pavement Structures. Final Report, NCHRP Project 1-37A
.
Toronto, Canada
:
National Cooperative Highway Research Program
,
ERES Consultants Division
.
5.
ASTM International.
2002
.
Standard Test Method for Particle-Size Analysis of Soils
. ASTM D422-63(2002).
West Conshohocken, PA
:
ASTM International
, approved November 10,
2002
. https://doi.org/https://www.10.1520/D0422-63R02
6.
ASTM International.
2010
.
Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils
. ASTM D4318-10e1.
West Conshohocken, PA
:
ASTM International
, approved January 15,
2010
. https://doi.org/https://www.10.1520/D4318-10E01
7.
ASTM International.
2011
.
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
. ASTM D2487-11.
West Conshohocken, PA
:
ASTM International
, approved May 1,
2011
. https://doi.org/https://www.10.1520/D2487-11
8.
ASTM International.
2012
.
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
. ASTM D698-12e1.
West Conshohocken, PA
:
ASTM International
, approved May 1,
2012
. https://doi.org/https://www.10.1520/D0698-12E01
9.
ASTM International.
2013
.
Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry
. ASTM E1621-13.
West Conshohocken, PA
:
ASTM International
. https://doi.org/https://www.10.1520/E1621-05
10.
ASTM International.
2013
.
Standard Test Method for Unconfined Compressive Strength of Cohesive Soil
. ASTM D2166/D2166M-13.
West Conshohocken, PA
:
ASTM International
, approved May 15,
2013
. https://doi.org/https://www.10.1520/D2166_D2166M-13
11.
ASTM International.
2014
.
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Withdrawn)
. ASTM D854-14.
West Conshohocken, PA
:
ASTM International
, approved May 1,
2014
.
12.
ASTM International.
2015
.
Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures
. ASTM D559/D559M-15.
West Conshohocken, PA
:
ASTM International
, approved November 15,
2015
. https://doi.org/https://www.10.1520/D0559_D0559M-15
13.
ASTM International.
2016
.
Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils
. ASTM D1883-16.
West Conshohocken, PA
:
ASTM International
, approved March 1,
2016
. https://doi.org/https://www.10.1520/D1883-16
14.
Bian
,
Z.
,
Dong
J.
,
Lei
S.
,
Leng
H.
,
Mu
S.
, and
Wang
H.
.
2009
. “
The Impact of Disposal and Treatment of Coal Mining Wastes on Environment and Farmland
.”
Environmental Geology
58
, no. 
3
(August):
625
634
. https://doi.org/10.1007/s00254-008-1537-0
15.
Bureau of Indian Standards (BIS).
1997
.
Methods of Test for Soils: Part XL: Determination of Free Swell Index of Soils
. IS 2720 (Part XL).
New Delhi, India
,
Bureau of Indian Standards
.
16.
Cheng
,
Y.
,
Hongqiang
M.
,
Hongyu
C.
,
Jiaxin
W.
,
Jing
S.
,
Zonghui
L.
, and
Mingkai
Y.
.
2018
. “
Preparation and Characterization of Coal Gangue Geopolymers
.”
Construction and Building Materials
187
(October):
318
326
. https://doi.org/10.1016/j.conbuildmat.2018.07.220
17.
Çokça
,
E.
2001
. “
Use of Class C Fly Ashes for the Stabilization of an Expansive Soil
.”
Journal of Geotechnical and Geoenvironmental Engineering
127
, no. 
7
(July):
568
573
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(568)
18.
Cortes
,
D. D.
,
Shin
H.
, and
Santamarina
J. C.
.
2012
. “
Numerical Simulation of Inverted Pavement Systems
.”
Journal of Transportation Engineering
138
, no. 
12
(December):
1507
1519
. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000472
19.
Davidovits
,
J.
1989
. “
Geopolymers and Geopolymeric Materials
.”
Journal of Thermal Analysis
35
, no. 
2
(March):
429
441
. https://doi.org/10.1007/BF01904446
20.
Davidovits
,
J.
1991
. “
Geopolymers: Inorganic Polymeric New Materials
.”
Journal of Thermal Analysis
37
, no. 
8
(August):
1633
1656
. https://doi.org/10.1007/BF01912193
21.
Davidovits
,
J.
n.d “
Synthesis of New High-Temperature Geopolymers for Reinforced Plastics/Composites
.” Paper presented at the SPE PACTEC ’79, Costa Mesa, CA, January
1979
.
22.
De Vargas
,
A. S.
,
Dal Molin
D. C. C.
,
Vilela
A. C. F.
,
da Silva
F. J.
,
Pavão
B.
, and
Veit
H.
.
2011
. “
The Effects of Na2O/SiO2 Molar Ratio, Curing Temperature and Age on Compressive Strength, Morphology and Microstructure of Alkali-Activated Fly Ash-Based Geopolymers
.”
Cement and Concrete Composites
33
, no. 
6
(July):
653
660
. https://doi.org/10.1016/j.cemconcomp.2011.03.006
23.
Deb
,
P. S.
,
Nath
P.
, and
Sarker
P. K.
.
2014
. “
The Effects of Ground Granulated Blast-Furnace Slag Blending with Fly Ash and Activator Content on the Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature
.”
Materials & Design
62
(October):
32
39
. https://doi.org/10.1016/j.matdes.2014.05.001
24.
Duong
,
N. A.
and
Skvara
F.
.
2016
. “
Factors Influencing the Long-Term Properties of Fly Ash-Based Geopolymer Mortar
.”
Advances in Civil Engineering Materials
5
, no. 
1
:
212
234
. https://doi.org/10.1520/ACEM20160002
25.
Duxson
,
P.
,
Provis
J. L.
,
Lukey
G. C.
,
Mallicoat
S. W.
,
Kriven
W. M.
, and
van Deventer
J. S. J.
.
2005
. “
Understanding the Relationship between Geopolymer Composition, Microstructure and Mechanical Properties
.”
Colloids and Surfaces A: Physicochemical and Engineering Aspects
269
, nos. 
1–3
(November):
47
58
. https://doi.org/10.1016/j.colsurfa.2005.06.060
26.
Fan
,
F.
,
Liu
Z.
,
Xu
G.
,
Peng
H.
, and
Cai
C. S.
.
2018
. “
Mechanical and Thermal Properties of Fly Ash Based Geopolymers
.”
Construction and Building Materials
160
(January):
66
81
. https://doi.org/10.1016/j.conbuildmat.2017.11.023
27.
Geng
,
J.
,
Zhou
M.
,
Zhang
T.
,
Wang
W.
,
Wang
T.
,
Zhou
X.
,
Wang
X.
, and
Hou
H.
.
2017
. “
Preparation of Blended Geopolymer from Red Mud and Coal Gangue with Mechanical Co-grinding Preactivation
.”
Materials and Structures
50
, no. 
2
(April): 109. https://doi.org/10.1617/s11527-016-0967-5
28.
Geng
,
J.
,
Zhou
M.
,
Li
Y.
,
Chen
Y.
,
Han
Y.
,
Wan
S.
,
Zhou
X.
, and
Hou
H.
.
2017
. “
Comparison of Red Mud and Coal Gangue Blended Geopolymers Synthesized through Thermal Activation and Mechanical Grinding Preactivation
.”
Construction and Building Materials
153
(October):
185
192
. https://doi.org/10.1016/j.conbuildmat.2017.07.045
29.
Ghadir
,
P.
and
Ranjbar
N.
.
2018
. “
Clayey Soil Stabilization Using Geopolymer and Portland Cement
.”
Construction and Building Materials
188
(November):
361
371
. https://doi.org/10.1016/j.conbuildmat.2018.07.207
30.
Granizo
,
M. L.
,
Alonso
S.
,
Blanco-Varela
M. T.
, and
Palomo
A.
.
2002
. “
Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction
.”
Journal of the American Ceramic Society
85
, no. 
1
(January):
225
231
. https://doi.org/10.1111/j.1151-2916.2002.tb00070.x
31.
Hajjaji
,
W.
,
Andrejkovičová
S.
,
Zanelli
C.
,
Alshaaer
M.
,
Dondi
M.
,
Labrincha
J. A.
, and
Rocha
F.
.
2013
. “
Composition and Technological Properties of Geopolymers Based on Metakaolin and Red Mud
.”
Materials & Design
52
(December):
648
654
. https://doi.org/10.1016/j.matdes.2013.05.058
32.
Heah
,
C. Y.
,
Kamarudin
H.
,
Mustafa Al Bakri
A. M.
,
Bnhussain
M.
,
Luqman
M.
,
Khairul Nizar
I.
,
Ruzaidi
C. M.
, and
Liew
Y. M.
.
2012
. “
Study on Solids-to-Liquid and Alkaline Activator Ratios on Kaolin-Based Geopolymers
.”
Construction and Building Materials
35
(October):
912
922
. https://doi.org/10.1016/j.conbuildmat.2012.04.102
33.
Heah
,
C. Y.
,
Kamarudin
H.
,
Mustafa Al Bakri
A. M.
,
Bnhussain
M.
,
Luqman
M.
,
Khairul Nizar
I.
,
Ruzaidi
C. M.
, and
Liew
Y. M.
.
2013
. “
Kaolin-Based Geopolymers with Various NaOH Concentrations
.”
International Journal of Minerals, Metallurgy, and Materials
20
, no. 
3
(March):
313
322
. https://doi.org/10.1007/s12613-013-0729-0
34.
Huang
,
G.
,
Ji
Y.
,
Li
J.
,
Hou
Z.
, and
Dong
Z.
.
2018
. “
Improving Strength of Calcinated Coal Gangue Geopolymer Mortars via Increasing Calcium Content
.”
Construction and Building Materials
166
(March):
760
768
. https://doi.org/10.1016/j.conbuildmat.2018.02.005
35.
Imtiaz
,
L.
,
Rehman
S. K. U.
,
Ali Memon
S.
,
Khizar Khan
M.
, and
Faisal Javed
M.
.
2020
. “
A Review of Recent Developments and Advances in Eco-friendly Geopolymer Concrete
.”
Applied Sciences
10
, no. 
21
(November): 7838. https://doi.org/10.3390/app10217838
36.
Indian Roads Congress.
2007
.
Guidelines for the Design of Flexible Pavements for Low Volume Rural Roads
. IRC:SP-72-2007.
New Delhi, India
:
Indian Roads Congress
.
37.
Indian Roads Congress.
2010
.
Guidelines for Soil and Granular Material Stabilization Using Cement, Lime & Fly Ash
. IRC:SP:89-2010.
New Delhi, India
:
Indian Roads Congress
.
38.
Indian Roads Congress.
2013
.
Tentative Guidelines for the Design of Flexible Pavements
. IRC:37-2012.
New Delhi, India
:
Indian Roads Congress
.
39.
Jin
,
F.
,
Gu
K.
,
Abdollahzadeh
A.
, and
Al-Tabbaa
A.
.
2015
. “
Effects of Different Reactive MgOs on the Hydration of MgO-Activated GGBS Paste
.”
Journal of Materials in Civil Engineering
27
, no. 
7
(July): B4014001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001009
40.
Kamei
,
T.
,
Ahmed
A.
, and
Shibi
T.
.
2013
. “
The Use of Recycled Bassanite and Coal Ash to Enhance the Strength of Very Soft Clay in Dry and Wet Environmental Conditions
.”
Construction and Building Materials
38
(January):
224
235
. https://doi.org/10.1016/j.conbuildmat.2012.08.028
41.
Kong
,
D. L. Y.
,
Sanjayan
J. G.
, and
Sagoe-Crentsil
K.
.
2007
. “
Comparative Performance of Geopolymers Made with Metakaolin and Fly Ash After Exposure to Elevated Temperatures
.”
Cement and Concrete Research
37
, no. 
12
(December):
1583
1589
. https://doi.org/10.1016/j.cemconres.2007.08.021
42.
Koshy
,
N.
,
Dondrob
K.
,
Hu
L.
,
Wen
Q.
, and
Meegoda
J. N.
.
2019
. “
Synthesis and Characterization of Geopolymers Derived from Coal Gangue, Fly Ash and Red Mud
.”
Construction and Building Materials
206
(May):
287
296
. https://doi.org/10.1016/j.conbuildmat.2019.02.076
43.
Lemougna
,
P. N.
,
Wang
K.
,
Tang
Q.
, and
Cui
X.
.
2017
. “
Study on the Development of Inorganic Polymers from Red Mud and Slag System: Application in Mortar and Lightweight Materials
.”
Construction and Building Materials
156
(December):
486
495
. https://doi.org/10.1016/j.conbuildmat.2017.09.015
44.
Li
,
J.
and
Wang
J.
.
2019
. “
Comprehensive Utilization and Environmental Risks of Coal Gangue: A Review
.”
Journal of Cleaner Production
239
(December): 117946. https://doi.org/10.1016/j.jclepro.2019.117946
45.
Li
,
D.
,
Wu
D.
,
Xu
F.
,
Lai
J.
, and
Shao
L.
.
2018
. “
Literature Overview of Chinese Research in the Field of Better Coal Utilization
.”
Journal of Cleaner Production
185
(June):
959
980
. https://doi.org/10.1016/j.jclepro.2018.02.216
46.
Li
,
Y.
,
Li
J.
,
Cui
J.
,
Shan
Y.
, and
Niu
Y.
.
2021
a. “
Experimental Study on Calcium Carbide Residue as a Combined Activator for Coal Gangue Geopolymer and Feasibility for Soil Stabilization
.”
Construction and Building Materials
312
(December): 125465. https://doi.org/10.1016/j.conbuildmat.2021.125465
47.
Li
,
Z.
,
Gao
Y.
,
Zhang
J.
,
Zhang
C.
,
Chen
J.
, and
Liu
C.
.
2021
b. “
Effect of Particle Size and Thermal Activation on the Coal Gangue Based Geopolymer
.”
Materials Chemistry and Physics
267
(July): 124657. https://doi.org/10.1016/j.matchemphys.2021.124657
48.
Luo
,
Y.
,
Bao
S.
,
Zhang
Y.
, and
Yuan
Y.
.
2019
. “
Recycling Vanadium-Bearing Shale Leaching Residue for the Production of One-Part Geopolymers
.”
Materials Research Express
6
, no. 
10
: 105203. https://doi.org/10.1088/2053-1591/ab3755
49.
Ma
,
H.
,
Zhu
H.
,
Yi
C.
,
Fan
J.
,
Chen
H.
,
Xu
X.
, and
Wang
T.
.
2019
. “
Preparation and Reaction Mechanism Characterization of Alkali-Activated Coal Gangue–Slag Materials
.”
Materials
12
, no. 
14
(July): 2250. https://doi.org/10.3390/ma12142250
50.
Ma
,
H.
,
Zhu
H.
,
Wu
C.
,
Chen
H.
,
Sun
J.
, and
Liu
J.
.
2020
. “
Study on Compressive Strength and Durability of Alkali-Activated Coal Gangue-Slag Concrete and Its Mechanism
.”
Powder Technology
368
(May):
112
124
. https://doi.org/10.1016/j.powtec.2020.04.054
51.
Mabroum
,
S.
,
Moukannaa
S.
,
El Machi
A.
,
Taha
Y.
,
Benzaazoua
M.
, and
Hakkou
R.
.
2020
. “
Mine Wastes Based Geopolymers: A Critical Review
.”
Cleaner Engineering and Technology
1
(December): 100014. https://doi.org/10.1016/j.clet.2020.100014
52.
McCormick
,
A. V.
,
Bell
A. T.
, and
Radke
C. J.
.
1989
. “
Multinuclear NMR Investigation of the Formation of Aluminosilicate Anions
.”
Journal of Physical Chemistry
93
, no. 
5
(March):
1741
1744
. https://doi.org/10.1021/j100342a015
53.
Mozumder
,
R. A.
and
Laskar
A. I.
.
2015
. “
Prediction of Unconfined Compressive Strength of Geopolymer Stabilized Clayey Soil Using Artificial Neural Network
.”
Computers and Geotechnics
69
(September):
291
300
. https://doi.org/10.1016/j.compgeo.2015.05.021
54.
Murmu
,
A. L.
,
Jain
A.
, and
Patel
A.
.
2019
. “
Mechanical Properties of Alkali Activated Fly Ash Geopolymer Stabilized Expansive Clay
.”
KSCE Journal of Civil Engineering
23
, no. 
9
(September):
3875
3888
. https://doi.org/10.1007/s12205-019-2251-z
55.
Nath
,
P.
and
Sarker
P. K.
.
2014
. “
Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition
.”
Construction and Building Materials
66
(September):
163
171
. https://doi.org/10.1016/j.conbuildmat.2014.05.080
56.
Papadopoulos
,
E.
and
Santamarina
J. C.
.
2019
. “
Inverted Base Pavements: Construction and Performance
.”
International Journal of Pavement Engineering
20
, no. 
6
:
697
703
. https://doi.org/10.1080/10298436.2017.1326237
57.
Phair
,
J. W.
and
Van Deventer
J. S. J.
.
2001
. “
Effect of Silicate Activator pH on the Leaching and Material Characteristics of Waste-Based Inorganic Polymers
.”
Minerals Engineering
14
, no. 
3
(March):
289
304
. https://doi.org/10.1016/S0892-6875(01)00002-4
58.
Phani Kumar
,
B. R.
and
Sharma
R. S.
.
2004
. “
Effect of Fly Ash on Engineering Properties of Expansive Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
130
, no. 
7
(July):
764
767
. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(764)
59.
Prasad
,
B.
,
Banerjee
N.
, and
Dhar
B. B.
.
1996
. “
Environmental Assessment of Coal Ash Disposal: A Review
.”
Journal of Scientific and Industrial Research
55
, no. 
10
(October):
772
780
.
60.
Reig
,
L.
,
Tashima
M. M.
,
Borrachero
M. V.
,
Monzó
J.
,
Cheeseman
C. R.
, and
Payá
J.
.
2013
. “
Properties and Microstructure of Alkali-Activated Red Clay Brick Waste
.”
Construction and Building Materials
43
(June):
98
106
. https://doi.org/10.1016/j.conbuildmat.2013.01.031
61.
Singhi
,
B.
,
Laskar
A. I.
, and
Ahmed
M. A.
.
2016
. “
Investigation on Soil – Geopolymer with Slag, Fly Ash and Their Blending
.”
Arabian Journal for Science and Engineering
41
, no. 
2
(February):
393
400
. https://doi.org/10.1007/s13369-015-1677-y
62.
Sun
,
T.
,
Chen
J.
,
Lei
X.
, and
Zhou
C.
.
2014
. “
Detoxification and Immobilization of Chromite Ore Processing Residue with Metakaolin-Based Geopolymer
.”
Journal of Environmental Chemical Engineering
2
, no. 
1
(March):
304
309
. https://doi.org/10.1016/j.jece.2013.12.022
63.
Tchakoute Kouamo
,
H.
,
Mbey
J. A.
,
Elimbi
A.
,
Kenne Diffo
B. B.
, and
Njopwouo
D.
.
2013
. “
Synthesis of Volcanic Ash-Based Geopolymer Mortars by Fusion Method: Effects of Adding Metakaolin to Fused Volcanic Ash
.”
Ceramics International
39
, no. 
2
(March):
1613
1621
. https://doi.org/10.1016/j.ceramint.2012.08.003
64.
Van Jaarsveld
,
J. G. S.
,
Van Deventer
J. S. J.
, and
Lorenzen
L.
.
1997
. “
The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals: Part I. Theory and Applications
.”
Minerals Engineering
10
, no. 
7
(July):
659
669
. https://doi.org/10.1016/S0892-6875(97)00046-0
65.
Van Jaarsveld
,
J. G. S.
,
Van Deventer
J. S. J.
, and
Lorenzen
L.
.
1998
. “
Factors Affecting the Immobilization of Metals in Geopolymerized Flyash
.”
Metallurgical and Materials Transactions B
29
, no. 
1
(February):
283
291
. https://doi.org/10.1007/s11663-998-0032-z
66.
Weil
,
M.
,
Dombrowski
K.
, and
Buchwald
A.
.
2009
. “
Life-Cycle Analysis of Geopolymers
.” In
Geopolymers: Structures, Processing, Properties and Industrial Applications
,
194
210
.
Cambridge, UK
:
Woodhead Publishing
. https://doi.org/10.1533/9781845696382.2.194
67.
Wu
,
H.
,
Wen
Q.
,
Hu
L.
,
Gong
M.
, and
Tang
Z.
.
2017
. “
Feasibility Study on the Application of Coal Gangue as Landfill Liner Material
.”
Waste Management
63
(May):
161
171
. https://doi.org/10.1016/j.wasman.2017.01.016
68.
Wu
,
H.
,
Jin
F.
,
Bo
Y.
,
Du
Y.
, and
Zheng
J.
.
2018
. “
Leaching and Microstructural Properties of Lead Contaminated Kaolin Stabilized by GGBS-MgO in Semi-dynamic Leaching Tests
.”
Construction and Building Materials
172
(May):
626
634
. https://doi.org/10.1016/j.conbuildmat.2018.03.164
69.
Xu
,
H.
and
Van Deventer
J. S. J.
.
2002
. “
Geopolymerisation of Multiple Minerals
.”
Minerals Engineering
15
, no. 
12
(December):
1131
1139
. https://doi.org/10.1016/S0892-6875(02)00255-8
70.
Yao
,
X.
,
Zhang
Z.
,
Zhu
H.
, and
Chen
Y.
.
2009
. “
Geopolymerization Process of Alkali-Metakaolinite Characterized by Isothermal Calorimetry
.”
Thermochimica Acta
493
, nos. 
1–2
(September):
49
54
. https://doi.org/10.1016/j.tca.2009.04.002
71.
Ye
,
N.
,
Yang
J.
,
Liang
S.
,
Hu
Y.
,
Hu
J.
,
Xiao
B.
, and
Huang
Q.
.
2016
. “
Synthesis and Strength Optimization of One-Part Geopolymer Based on Red Mud
.”
Construction and Building Materials
111
(May):
317
325
. https://doi.org/10.1016/j.conbuildmat.2016.02.099
72.
Yi
,
C.
,
Ma
H.
,
Zhu
H.
,
Li
W.
,
Xin
M.
,
Liu
Y.
, and
Guo
Y.
.
2018
. “
Study on Chloride Binding Capability of Coal Gangue Based Cementitious Materials
.”
Construction and Building Materials
167
(April):
649
656
. https://doi.org/10.1016/j.conbuildmat.2018.02.071
73.
Yip
,
C. K.
,
Lukey
G. C.
,
Provis
J. L.
, and
van Deventer
J. S. J.
.
2008
. “
Effect of Calcium Silicate Sources on Geopolymerisation
.”
Cement and Concrete Research
38
, no. 
4
(April):
554
564
. https://doi.org/10.1016/j.cemconres.2007.11.001
74.
Yu
,
J. L.
,
Meng
F. R.
,
Li
X. C.
, and
Tahmasebi
A.
.
2012
. “
Power Generation from Coal Gangue in China: Current Status and Development
.”
Advanced Materials Research
550–553
:
443
446
. https://doi.org/10.4028/www.scientific.net/AMR.550-553.443
75.
Zhang
,
N.
,
Sun
H.
,
Liu
X.
, and
Zhang
J.
.
2009
. “
Early-Age Characteristics of Red Mud-Coal Gangue Cementitious Material
.”
Journal of Hazardous Materials
167
, nos. 
1–3
(August):
927
932
. https://doi.org/10.1016/j.jhazmat.2009.01.086
76.
Zhang
,
M.
,
Guo
H.
,
El-Korchi
T.
,
Zhang
G.
, and
Tao
M.
.
2013
. “
Experimental Feasibility Study of Geopolymer as the Next-Generation Soil Stabilizer
.”
Construction and Building Materials
47
(October):
1468
1478
. https://doi.org/10.1016/j.conbuildmat.2013.06.017
77.
Zhang
,
M.
,
El-Korchi
T.
,
Zhang
G.
,
Liang
J.
, and
Tao
M.
.
2014
. “
Synthesis Factors Affecting Mechanical Properties, Microstructure, and Chemical Composition of Red Mud–Fly Ash Based Geopolymers
.”
Fuel
134
(October):
315
325
. https://doi.org/10.1016/j.fuel.2014.05.058
78.
Zhang
,
Z. H.
,
Zhu
H. J.
,
Zhou
C. H.
, and
Wang
H.
.
2016
. “
Geopolymer from Kaolin in China: An Overview
.”
Applied Clay Science
119
, Part 1 (January):
31
41
. https://doi.org/10.1016/j.clay.2015.04.023
79.
Zhang
,
M.
,
Zhao
M.
,
Zhang
G.
,
Sietins
J. M.
,
Granados-Focil
S.
,
Pepi
M. S.
,
Xu
Y.
, and
Tao
M.
.
2018
. “
Reaction Kinetics of Red Mud- Fly Ash Based Geopolymers: Effects of Curing Temperature on Chemical Bonding, Porosity, and Mechanical Strength
.”
Cement and Concrete Composites
93
(October):
175
185
. https://doi.org/10.1016/j.cemconcomp.2018.07.008
80.
Zhang
,
D.
,
Sun
F.
, and
Liu
T.
.
2021
. “
Study on Preparation of Coal Gangue-Based Geopolymer Concrete and Mechanical Properties
.”
Advances in Civil Engineering
2021
: 5117584. https://doi.org/10.1155/2021/5117584
This content is only available via PDF.
You do not currently have access to this content.