Abstract

Pavement layers exhibit stress-dependent behavior, characterized by using a laboratory resilient modulus (Mr) test. However, the field behavior of such materials seldom matches with the laboratory because of changes in the state of stress, material matrix, and loading patterns. In this study, the nonlinear behaviors of three innovative fly ash-based lightly stabilized industrial waste mixes that are proposed to replace the granular subbase of flexible pavement are characterized and compared in the laboratory and field for the first time. Nine full-scale pavement test sections were constructed with three varying thicknesses of waste mix subbase layers, namely, fly ash +  5 % lime (FAL), 70 % copper slag +  30 % fly ash (CFA) and 80 % fly ash +  20 % granulated blast furnace slag (FAG). Repeated load triaxial tests on lab samples and multiload falling weight deflectometer (FWD) tests (40 kN, 55 kN and 70 kN) on test sections conducted for three years post-construction were used to extract the nonlinear behavior of Mr and the FWD backcalculated modulus (EFWD) of subbase layers. Effects of curing and traffic damage on the nonlinear parameters of EFWD were investigated. Stress-dependent conversion factors based on two different constitutive models were established to convert Mr to EFWD at different points of the subbase service life. Stabilized waste mixes exhibited stress hardening with increasing bulk and deviatoric stresses both in the field and laboratory. Curing increased EFWD and reduced the effect of stresses on the EFWD. In contrast, traffic damage imparted the opposite effect, as the stabilized waste mixes transformed into a cracked and blocky mass. The results of this study will allow practitioners to predict the field performance of waste mix subbase with great accuracy, resulting in a reliable design and possible cost savings.

References

1.
AASHTO.
2003
.
Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregates
, AASHTO-T307. Washington, DC:
American Association of State Highway and Transportation Officials
.
2.
AASHTO.
2015
.
Mechanistic-Empirical Pavement Design Guide: A Manual of Practice
, 2nd ed.
Washington, DC
:
American Association of State Highway and Transportation Officials
.
3.
Ahmed
,
M. U.
,
Hasan
M. M.
, and
Tarefder
R. A.
.
2016
. “
Investigating Stress Dependency of Unbound Layers Using Falling-Weight Deflectometer and Resilient Modulus Tests
.”
Geotechnical Testing Journal
39
, no. 
6
(November):
954
964
. https://doi.org/10.1520/GTJ20150271
4.
ASTM International.
2007
.
Standard Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD)
(Superseded). ASTM E2583-07(2020). West Conshohocken, PA:
ASTM International
, approved November 1,
2020
. https://doi.org/10.1520/E2583-07R20
5.
ASTM International.
2014
.
Standard Test Method for CBR (California Bearing Ratio) of Laboratory Compacted Soils
. ASTM D1883-07. West Conshohocken, PA:
ASTM International
, approved November 15,
2007
. https://doi.org/10.1520/D1883-07
6.
ASTM International.
2017
.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
(Superseded). ASTM C618-17. West Conshohocken, PA:
ASTM International
, approved October 1,
2017
. https://doi.org/10.1520/C0618-17
7.
ASTM International.
2022
.
Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures
. ASTM D5102-22. West Conshohocken, PA:
ASTM International
, approved October 1,
2022
. https://doi.org/10.1520/D5102_D5102M-22
8.
Avirneni
,
D.
,
Peddinti
P. R. T.
, and
Saride
S.
.
2016
. “
Durability and Long Term Performance of Geopolymer Stabilized Reclaimed Asphalt Pavement Base Courses
.”
Construction and Building Materials
121
(
September
):
198
209
. https://doi.org/10.1016/j.conbuildmat.2016.05.162
9.
Bakare
,
M. D.
,
Pai
R. R.
,
Patel
S.
, and
Shahu
J. T.
.
2019
. “
Environmental Sustainability by Bulk Utilization of Fly Ash and GBFS as Road Subbase Materials
.”
Journal of Hazardous, Toxic, and Radioactive Waste
23
, no. 
4
(October): 04019011. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000450
10.
Bakare
,
M. D.
,
Shahu
J. T.
, and
Patel
S.
.
2023
. “
Complete Substitution of Natural Aggregates with Industrial Wastes in Road Subbase: A Field Study
.”
Resources, Conservation, and Recycling
190
(March): 106856. https://doi.org/10.1016/J.RESCONREC.2022.106856
11.
Barstis
,
W. F.
and
Metcalf
J.
.
2005
. “
Practical Approach to Criteria for the Use of Lime-Fly Ash Stabilization in Base Courses
.”
Transportation Research Record
1936
, no. 
1
(January):
20
27
. https://doi.org/10.1177/0361198105193600103
12.
Bin-Shafique
,
S.
,
Edil
T. B.
,
Benson
C. H.
, and
Senol
A.
.
2004
. “
Incorporating a Fly-Ash Stabilised Layer into Pavement Design
.”
Geotechnical Engineering
157
, no. 
4
(October):
239
249
. https://doi.org/10.1680/geng.2004.157.4.239
13.
BIS.
2006
.
Methods of Test for Soils: Part 4 Grain Size Analysis
. IS 2720 Part 4. New Delhi, India:
Bureau of Indian Standards
.
14.
BIS.
2006
.
Methods for Test for Soils: Part 8 Determination of Water Content-Dry Density Relation Using Heavy Compaction
. IS 2720 Part 8. New Delhi, India:
Bureau of Indian Standards
.
15.
Consoli
,
N. C.
,
Prietto
P. D. M.
,
Carraro
J. A. H.
, and
Heineck
K. S.
.
2001
. “
Behavior of Compacted Soil-Fly Ash-Carbide Lime Mixtures
.”
Journal of Geotechnical and Geoenvironmental Engineering
127
, no. 
9
(September):
774
782
. https://doi.org/10.1061/(asce)1090-0241(2001)127:9(774)
16.
Consoli
,
N. C.
,
Rosa
A. D.
, and
Saldanha
R. B.
.
2011
. “
Variables Governing Strength of Compacted Soil–Fly Ash–Lime Mixtures
.”
Journal of Materials in Civil Engineering
23
, no. 
4
(April):
432
440
. https://doi.org/10.1061/(asce)mt.1943-5533.0000186
17.
Dawson
,
T. A.
,
Baladi
G. Y.
,
Sessions
C. P.
, and
Haider
S. W.
.
2009
. “
Backcalculated and Laboratory-Measured Resilient Modulus Values
.”
Transportation Research Record
2094
, no. 
1
(January):
71
78
. https://doi.org/10.3141/2094-08
18.
Disfani
,
M. M.
,
Arulrajah
A.
,
Haghighi
H.
,
Mohammadinia
A.
, and
Horpibulsuk
S.
.
2014
. “
Flexural Beam Fatigue Strength Evaluation of Crushed Brick as a Supplementary Material in Cement Stabilized Recycled Concrete Aggregates
.”
Construction and Building Materials
68
(October):
667
676
. https://doi.org/10.1016/j.conbuildmat.2014.07.007
19.
Ghosh
,
A.
and
Subbarao
C.
.
2007
. “
Strength Characteristics of Class F Fly Ash Modified with Lime and Gypsum
.”
Journal of Geotechnical and Geoenvironmental Engineering
133
, no. 
7
(July):
757
766
. https://doi.org/10.1061/(asce)1090-0241(2007)133:7(757)
20.
Havanagi
,
V. G.
,
Mathur
S.
,
Prasad
P. S.
, and
Kamaraj
C.
.
2007
. “
Feasibility of Copper Slag-Fly Ash-Soil Mix as a Road Construction Material
.”
Transportation Research Record
1989-2
, no. 
1
(January):
13
20
. https://doi.org/10.3141/1989-43
21.
Hicks
,
R. G.
and
Monismith
C. L.
.
1971
. “
Factors Influencing the Resilient Response of Granular Materials
.” In
Highway Research Record
,
15
31
.
Washington, DC
:
Transportation Research Board
.
22.
Huang
,
Y. H.
1993
.
Pavement Analysis and Design
, 1st ed.
Hoboken, NJ
:
Prentice Hall
.
23.
IRC.
2002
.
Rural Roads Manual
. IRC SP 20. New Delhi, India:
Indian Roads Congress
.
24.
IRC.
2012
.
Guidelines for the Design of Flexible Pavements (Third Revision)
. IRC 37. New Delhi, India:
Indian Roads Congress
.
25.
IRC.
2014
.
Guidelines for Structural Evaluation and Strengthening of Flexible Road Pavements Using Falling Weight Deflectometer (FWD) Technique
. IRC 115. New Delhi, India:
Indian Roads Congress
.
26.
IRC.
2019
.
Guidelines on Measuring Road Roughness and Norms
. IRC SP 16. New Delhi, India:
Indian Roads Congress
.
27.
Mallick
,
R. B.
,
Radzicki
M. J.
,
Zaumanis
M.
, and
Frank
R.
.
2014
. “
Use of System Dynamics for Proper Conservation and Recycling of Aggregates for Sustainable Road Construction
.”
Resources, Conservation and Recycling
86
(May):
61
73
. https://doi.org/10.1016/j.resconrec.2014.02.006
28.
Ministry of Road Transport and Highways.
2013
.
Specifications for Road and Bridge Works (Fifth Revision)
.
New Delhi, India
:
Indian Roads Congress
.
29.
Mohammadinia
,
A.
,
Arulrajah
A.
,
Sanjayan
J.
,
Disfani
M. M.
,
Bo
M. W.
, and
Darmawan
S.
.
2015
. “
Laboratory Evaluation of the Use of Cement-Treated Construction and Demolition Materials in Pavement Base and Subbase Applications
.”
Journal of Materials in Civil Engineering
27
, no. 
6
(June): 04014186. https://doi.org/10.1061/(asce)mt.1943-5533.0001148
30.
Mooney
,
M. A.
and
Miller
P. K.
.
2009
. “
Analysis of Lightweight Deflectometer Test Based on In Situ Stress and Strain Response
.”
Journal of Geotechnical and Geoenvironmental Engineering
135
, no. 
2
(February):
199
208
. https://doi.org/10.1061/(asce)1090-0241(2009)135:2(199)
31.
Ng
,
K.
,
Hellrung
D.
,
Ksaibati
K.
, and
Wulff
S. S.
.
2018
. “
Systematic Back-Calculation Protocol and Prediction of Resilient Modulus for MEPDG
.”
International Journal of Pavement Engineering
19
, no. 
1
:
62
74
. https://doi.org/10.1080/10298436.2016.1162303
32.
Oh
,
J. H.
,
Fernando
E. G.
,
Holzschuher
C.
, and
Horhota
D.
.
2012
. “
Comparison of Resilient Modulus Values for Florida Flexible Mechanistic-Empirical Pavement Design
.”
The International Journal of Pavement Engineering
13
, no. 
5
:
472
484
. https://doi.org/10.1080/10298436.2011.633170
33.
Pai
,
R. R.
,
Bakare
M. D.
,
Patel
S.
, and
Shahu
J. T.
.
2021
. “
Structural Evaluation of Flexible Pavement Constructed with Steel Slag–Fly Ash–Lime Mix in the Base Layer
.”
Journal of Materials in Civil Engineering
33
, no. 
6
(June): 04021097. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003711
34.
Pai
,
R. R.
,
Bakare
M. D.
,
Patel
S.
, and
Shahu
J. T.
.
2022
. “
Asserting the Applicability of Copper Slag and Fly Ash as Cemented Base Materials in Flexible Pavement from a Full-Scale Field Study
.”
Journal of Materials in Civil Engineering
34
, no. 
4
(April): 04022001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004123
35.
Patel
,
S.
and
Shahu
J. T.
.
2016
. “
Resilient Response and Permanent Strain of Steel Slag-Fly Ash-Dolime Mix
.”
Journal of Materials in Civil Engineering
28
, no. 
10
(October): 04016106. https://doi.org/10.1061/(asce)mt.1943-5533.0001619
36.
Patel
,
S.
and
Shahu
J. T.
.
2018
. “
Comparison of Industrial Waste Mixtures for Use in Subbase Course of Flexible Pavements
.”
Journal of Materials in Civil Engineering
30
, no. 
7
(July): 04018124. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002320
37.
Puppala
,
A. J.
,
Hoyos
L. R.
, and
Potturi
A. K.
.
2011
. “
Resilient Moduli Response of Moderately Cement-Treated Reclaimed Asphalt Pavement Aggregates
.”
Journal of Materials in Civil Engineering
23
, no. 
7
(July):
990
998
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000268
38.
Qin
,
J.
Predicting Flexible Pavement Structural Response Using Falling Weight Deflectometer Deflections
.” Master’s thesis,
Russ College of Engineering and Technology of Ohio University
,
2010
.
39.
Rahman
,
M. A.
,
Arulrajah
A.
,
Piratheepan
J.
,
Bo
M. W.
, and
Imteaz
M. A.
.
2014
. “
Resilient Modulus and Permanent Deformation Responses of Geogrid-Reinforced Construction and Demolition Materials
.”
Journal of Materials in Civil Engineering
26
, no. 
3
(March):
512
519
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000824
40.
Salour
,
F.
and
Erlingsson
S.
.
2013
. “
Investigation of a Pavement Structural Behaviour during Spring Thaw Using Falling Weight Deflectometer
.”
Road Materials and Pavement Design
14
, no. 
1
:
141
158
. https://doi.org/10.1080/14680629.2012.754600
41.
Saride
,
S.
and
Jallu
M.
.
2020
. “
Effect of Fly Ash Geopolymer on Layer Coefficients of Reclaimed Asphalt Pavement Bases
.”
Journal of Transportation Engineering, Part B: Pavements
146
, no. 
3
(September): 04020033. https://doi.org/10.1061/JPEODX.0000169
42.
Sarkar
,
R.
,
Abbas
S. M.
, and
Shahu
J. T.
.
2012
. “
Geotechnical Behaviour of Randomly Oriented Fiber Reinforced Pond Ashes Available in Delhi Region
.”
International Journal of Earth Sciences and Engineering
5
, no. 
1
(February):
44
50
.
43.
Sayagh
,
S.
,
Ventura
A.
,
Hoang
T.
,
François
D.
, and
Jullien
A.
.
2010
. “
Sensitivity of the LCA Allocation Procedure for BFS Recycled into Pavement Structures
.”
Resources, Conservation and Recycling
54
, no. 
6
(April):
348
358
. https://doi.org/10.1016/j.resconrec.2009.08.011
44.
Seeds
,
S. B.
,
Alavi
S. H.
,
Ott
W. C.
,
Mikhail
M.
, and
Mactutis
J. A.
.
2000
. “
Evaluation of Laboratory Determined and Nondestructive Test Based Resilient Modulus Values from WesTrack Experiment
.” In
Nondestructive Testing of Pavements and Backcalculation of Moduli: Third Volume
, edited by
Tayabji
S. D.
and
Lukanen
E. O.
,
72
94
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP14761S
45.
Shahu
,
J. T.
,
Patel
S.
, and
Senapati
A.
.
2013
. “
Engineering Properties of Copper Slag–Fly Ash–Dolime Mix and Its Utilization in the Base Course of Flexible Pavements
.”
Journal of Materials in Civil Engineering
25
, no. 
12
(December):
1871
1879
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000756
46.
Tanyu
,
B. F.
,
Kim
W. H.
,
Edil
T. B.
, and
Benson
C. H.
.
2003
. “
Comparison of Laboratory Resilient Modulus with Back-Calculated Elastic Moduli from Large-Scale Model Experiments and FWD Tests on Granular Materials
.” In
Resilient Modulus Testing for Pavement Components
, edited by
Durham
G.
,
DeGroff
W.
, and
Marr
W. A.
,
191
208
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP1437-EB
47.
Tutumluer
,
E.
Predicting Behavior of Flexible Pavements with Granular Bases
.” PhD diss.,
Georgia Institute of Technology
,
1995
.
48.
Umashankar
,
B.
,
Hariprasad
C.
, and
Kumar
G. T.
.
2016
. “
Compaction Quality Control of Pavement Layers Using LWD
.”
Journal of Materials in Civil Engineering
28
, no. 
2
(February): 04015111. https://doi.org/10.1061/(asce)mt.1943-5533.0001379
49.
Virgil Ping
,
W. V.
,
Yang
Z.
,
Liu
C.
, and
Dietrich
B.
.
2001
. “
Measuring Resilient Modulus of Granular Materials in Flexible Pavements
.”
Transportation Research Record
1778
, no. 
1
(January):
81
90
. https://doi.org/10.3141/1778-10
50.
Wen
,
H.
,
Muhunthan
B.
,
Wang
J.
,
Li
X.
,
Edil
T.
, and
Tinjum
J. M.
.
2014
.
Characterization of Cementitiously Stabilized Layers for Use in Pavement Design and Analysis. NCHRP Project 04-36
.
Washington, DC
:
National Cooperative Highway Research Program
. https://doi.org/10.17226/22247
51.
Witczak
,
M. W.
2003
.
Harmonized Test Methods for Laboratory Determination of Resilient Modulus for Flexible Pavement Design, NCHRP 01-28A Final Report
.
Washington, DC
:
National Cooperative Highway Research Program
.
52.
Zhang
,
Y. J.
,
Zhang
Y.
,
Gu
F.
,
Luo
X.
,
Birgisson
B.
, and
Lytton
R. L.
.
2018
. “
Modeling Stress-Dependent Anisotropic Elastoplastic Unbound Granular Base in Flexible Pavements
.”
Transportation Research Record
2672
, no. 
52
(December):
46
56
. https://doi.org/10.1177/0361198118758318
This content is only available via PDF.
You do not currently have access to this content.