Abstract

The increasing demand for the development and expansion of transport infrastructures requires alternative solutions that are economically and environmentally viable to provide the necessary raw materials. Transport infrastructures consume a large amount of natural aggregates; however, from a circular economy perspective, industrial by-products can effectively replace these materials. This avoids the environmental impacts associated with the extraction of natural raw materials and simultaneously provides a destination for the industrial by-products. For this purpose, it is important to evaluate if existing standards and technical requirements that were developed for natural aggregates are suitable for industrial by-products. This review study is focused on slags from steelmaking process in electric arc furnaces, which are generally of two types: oxidizing (black colored) and reducing (lighter colored), specifically addressing the requirements of these materials for the granular layers of transport infrastructures. The chemical composition of the slags is analyzed as well as its physical and mechanical characteristics, swelling behavior, and leachate content, discussing testing procedures and technical specifications.

References

1.
Associação Brasileira de Normas Técnicas (ABNT).
2014
.
Via férrea – lastro ferroviário – requisitos e métodos de ensaio
. NBR 5564.
Rio de Janeiro
, Brazil, approved
2014
.
2.
Abu-Farsakh
,
M.
,
Dhakal
S.
, and
Chen
Q.
.
2015
. “
Laboratory Characterization of Cementitiously Treated/Stabilized Very Weak Subgrade Soil under Cyclic Loading
.”
Soils and Foundations
55
, no. 
3
(June):
504
516
. https://doi.org/10.1016/j.sandf.2015.04.003
3.
Akbarnejad
,
S.
,
Houben
L. J. M.
, and
Molenaar
A. A. A.
.
2014
. “
Application of Aging Methods to Evaluate the Long-Term Performance of Road Bases Containing Blast Furnace Slag Materials
.”
Road Materials and Pavement Design
15
, no. 
3
(May 2014):
488
506
. https://doi.org/10.1080/14680629.2014.907196
4.
Alexander
,
M. S.
2005
.
Escória de forno eléctrico
.
Seixal, Portugal
:
Alexander Mill Services
.
5.
Aminorroaya
,
S. E.
,
Tohidi
A.
,
Parsi
J.
, and
Zamani
B.
.
2004
. “
Recycling of Ladle Furnace Slags
.” In
Second International Conference on Process Development in Iron and Steelmaking (SCANMET II)
,
379
384
.
Lulea, Sweden
:
MEFOS
6.
Amran
,
M.
,
Murali
G.
,
Khalid
N. H. A.
,
Fediuk
R.
,
Ozbakkaloglu
T.
,
Lee
Y. H.
,
Haruna
S.
, and
Lee
Y. Y.
.
2021
. “
Slag Uses in Making an Ecofriendly and Sustainable Concrete: A Review
.”
Construction and Building Materials
272
(February): 121942. https://doi.org/10.1016/j.conbuildmat.2020.121942
7.
Aponte
,
D.
,
Martín
O. S.
,
del Barrio
S. V.
, and
Bizinotto
M. B.
.
2020
. “
Ladle Steel Slag in Activated Systems for Construction Use
.”
Minerals
10
, no. 
8
(August): 687. https://doi.org/10.3390/min10080687
8.
American Railway Engineering Maintenance-of-Way Association.
2015
.
Manual for Railway Engineering
, Volume 1. Lanham, MD:
AREMA.
9.
Arulrajah
,
A.
,
Mohammadinia
A.
,
D’Amico
A.
, and
Horpibulsuk
S.
.
2017
. “
Cement Kiln Dust and Fly Ash Blends as an Alternative Binder for the Stabilization of Demolition Aggregates
.”
Construction and Building Materials
145
(August):
218
225
. https://doi.org/10.1016/j.conbuildmat.2017.04.007
10.
Australasian Slag Association (ASA).
2002
.
A Guide to the Use of Iron and Steel Slag in Roads
.
Wollongong, Australia
:
Australasian Slag Association Inc
.
11.
ASTM International.
2000
.
Standard Test Method for Potential Expansion of Aggregates from Hydration Reactions (Superseded)
. ASTM D4792. West Conshohocken, PA:
ASTM International
, approved December 10, 2000. https://doi.org/10.1520/D4792-00
12.
ASTM International.
2003
.
Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports (Superseded)
. ASTM D2940. West Conshohocken, PA:
ASTM International
, approved February 10, 2003. https://doi.org/10.1520/D2940-03
13.
Bocci
,
E.
2018
. “
Use of Ladle Furnace Slag as Filler in Hot Asphalt Mixtures
.”
Construction and Building Materials
161
:
156
164
. https://doi.org/10.1016/j.conbuildmat.2017.11.120
14.
Branca
,
T. A.
,
Colla
V.
, and
Valentini
R.
.
2009
. “
A Way to Reduce Environmental Impact of Ladle Furnace Slag
.”
Ironmaking & Steelmaking
36
, no. 
8
(July 2013):
597
602
. https://doi.org/10.1179/030192309X12492910937970
15.
British Standards Institution.
1998
.
Tests for Chemical Properties of Aggregates – Part 1: Chemical Analysis
(Withdrawn). EN 1744-1.
London
:
British Standards Institution
, approved
1998
.
16.
Carneiro
,
M. B.
2021
.
Valorização da Escória Branca Resultantes do Processo de Afinação na Aciaria Elétrica
.
Porto, Portugal
:
FEUP-Faculdade de Engenharia da Universidade do Porto, Engenharia Civil
.
17.
Correia
,
A. G.
,
Roque
A. J.
,
Ferreira
S. M. S.
, and
Fortunato
E.
.
2012
. “
Case Study to Promote the Use of Industrial Byproducts: The Relevance of Performance Tests
.”
Journal of ASTM International
9
, no. 
2
(February): JAI103705. https://doi.org/10.1520/JAI103705
18.
Committee of State Road Authorities (CSRA).
1985
.
Guidelines for Road Construction Materials
. TRH 14. Pretoria,
South Africa
:
Technical Recommendations for Highways
.
19.
Das
,
S.
,
Kim
G. W.
,
Hwang
H. Y.
,
Verma
P. P.
, and
Kim
P. J.
.
2019
. “
Cropping with Slag to Address Soil, Environment, and Food Security
.”
Frontiers in Microbiology
10
: 1320. https://doi.org/10.3389/fmicb.2019.01320
20.
Das
,
B.
,
Prakash
S.
,
Reddy
P. S. R.
, and
Misra
V. N.
.
2007
. “
An Overview of Utilization of Slag and Sludge from Steel Industries
.”
Resources, Conservation, and Recycling
50
, no. 
1
(March):
40
57
. https://doi.org/10.1016/j.resconrec.2006.05.008
21.
Dawson
,
A. R.
and
Wellner
F.
.
1999
.
Plastic Behaviour of Granular Materials. Final Report ARC Project 933
.
Nottingham, UK
:
University of Nottingham
.
22.
Dayioglu
,
A. Y.
and
Aydilek
A. H.
.
2017
. “
Evaluation of Mitigation Techniques for the Expansive Behavior of Steel Slag
.” In
Geotechnical Frontiers 2017
,
360
368
.
Reston, VA
:
American Society of Civil Engineers
.
23.
Dayioglu
,
A. Y.
,
Aydilek
A. H.
,
Cimen
O.
, and
Cimen
M.
.
2018
. “
Trace Metal Leaching from Steel Slag Used in Structural Fills
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
12
(December): 04018089. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001980
24.
Delgado
,
B. G.
,
Viana da Fonseca
A.
,
Fortunato
E.
, and
Motta
L. M. G.
.
2019
a. “
Particle Morphology’s Influence on the Rail Ballast Behaviour of a Steel Slag Aggregate
.”
Environmental Geotechnics
9
, no. 
6
(September):
373
382
. https://doi.org/10.1680/jenge.18.00203
25.
Delgado
,
B. G.
,
Viana da Fonseca
A.
,
Fortunato
E.
, and
Maia
P.
.
2019
b. “
Mechanical Behavior of Inert Steel Slag Ballast for Heavy Haul Rail Track: Laboratory Evaluation
.”
Transportation Geotechnics
20
: 100243. https://doi.org/10.1016/j.trgeo.2019.100243
26.
Delgado
,
B. G.
,
Viana da Fonseca
A.
,
Fortunato
E.
,
Paixão
A.
, and
Alves
R.
.
2021
. “
Geomechanical Assessment of an Inert Steel Slag Aggregate as an Alternative Ballast Material for Heavy Haul Rail Tracks
.”
Construction and Building Materials
279
(April): 122438. https://doi.org/10.1016/j.conbuildmat.2021.122438
27.
Dippenaar
,
R.
2005
. “
Industrial Uses of Slag (the Use and Re-use of Iron and Steelmaking Slags)
.”
Ironmaking & Steelmaking
32
, no. 
1
(July 2013):
35
46
. https://doi.org/10.1179/174328105X15805
28.
European Aggregates Association.
2023
. “
UEPG
.”
European Aggregates Association
. https://doi.org/https://web.archive.org/web/20230615225300/https://uepg.eu/
29.
Engström
,
F.
,
Larsson
M. L.
,
Samuelsson
C.
,
Sandström
A.
,
Robinson
R.
, and
Björkman
B.
.
2014
. “
Leaching Behavior of Aged Steel Slags
.”
Steel Research International
85
, no. 
4
(April):
607
615
. https://doi.org/10.1002/srin.201300119
30.
European Committee for Standardization.
2002
.
Aggregates for Unbound and Hydraulically Bound Materials for Use in Civil Engineering Work and Road Construction
. EN 13242. Brussels, Belgium:
European Committee for Standardization
.
31.
European Committee for Standardization.
2004
.
Unbound and Hydraulically Bound Mixtures – Part 7: Cyclic Load Triaxial Test for Unbound Mixtures
. EN 13286-7. Brussels, Belgium:
European Committee for Standardization
.
32.
Euroslag – The European Slag Association.
2023
. “
Downloads – Euroslag
.”
Euroslag – The European Slag Association
. https://doi.org/https://web.archive.org/web/20230617112724/https://www.euroslag.com/research-library-downloads/downloads/
33.
Federal Highway Administration.
1998
.
User Guidelines for Waste and By-Product Materials in Pavement Construction, FHWA-97-148
.
Washington, DC
:
US Department of Transport
.
34.
Geiseler
,
J.
1996
. “
Use of Steelworks Slag in Europe
.”
Waste Management
16
, nos. 
1–3
(February):
59
63
. https://doi.org/10.1016/S0956-053X(96)00070-0
35.
Ghorai
,
S.
,
Mandal
G. K.
,
Roy
S.
,
Minj
R. K.
,
Agarwal
A.
,
Singh
D. P.
,
Kumar
A.
, and
Ramna
R. B.
.
2017
. “
Treatment of LF Slag to Prevent Powdering during Cooling
.”
Journal of Mining and Metallurgy, Section B: Metallurgy
53
, no. 
2
(January 2017):
123
130
. https://doi.org/10.2298/JMMB160226004G
36.
Gobetti
,
A.
,
Cornacchia
G.
,
Ramorino
G.
,
Riboldi
A.
, and
Depero
L. E.
.
2021
. “
EAF Slag as Alternative Filler for Epoxy Screeds, an Example of Green Reuse
.”
Sustainable Materials and Technologies
29
(September): e00324. https://doi.org/10.1016/j.susmat.2021.e00324
37.
Guo
,
J.
,
Bao
Y.
, and
Wang
M.
.
2018
. “
Steel Slag in China: Treatment, Recycling, and Management
.”
Waste Management
78
:
318
330
. https://doi.org/10.1016/j.wasman.2018.04.045
38.
Gurtubay
,
L.
,
Gallastegui
G.
,
Elias
A.
,
Rojo
N.
, and
Barona
A.
.
2014
. “
Accelerated Ageing of an EAF Black Slag by Carbonation and Percolation for Long-Term Behaviour Assessment
.”
Journal of Environmental Management
140
(July):
45
50
. https://doi.org/10.1016/j.jenvman.2014.03.011
39.
Huijgen
,
W.
,
Witkamp
G. J.
, and
Comans
R.
.
2004
. “
Mineral CO2 Sequestration in Alkaline Solid Residues
.” In
Proceedings of the Seventh International Conference on Greenhouse Gas Control Technologies (GHGT)
,
2415
2418
.
Vancouver, Canada
:
Elsevier Science Ltd
.
40.
Huijgen
,
W. J. J.
,
Witkamp
G. J.
, and
Comans
R. N. J.
.
2005
. “
Mineral CO2 Sequestration by Steel Slag Carbonation
.”
Environmental Science & Technology
39
, no. 
24
(December):
9676
9682
. https://doi.org/10.1021/es050795f
41.
Hussain
,
A.
and
Hussaini
S. K. K.
.
2022
. “
Use of Steel Slag as Railway Ballast: A Review
.”
Transportation Geotechnics
35
: 100779. https://doi.org/10.1016/j.trgeo.2022.100779
42.
IBS.
2023
.
Anuário Estatístico da Indústria Siderúrgica Brasileira
. (in Portuguese) Rio de Janeiro, Brazil:
Grips
, https://doi.org/https://web.archive.org/web/20230617103650/https://siderurgiabrasil.com.br/wp-content/uploads/2023/03/gc2023_site.pdf.
43.
IHOBE (Public Environmental Management Society).
1999
. “
Libro blanco para la minimización de residuos y e–isiones - Escorias de acería
” (in Spanish). Pais Vasco, Spain:
Sociedad Pública Gestíon Ambiental
.
44.
Indraratna
,
B.
,
Ionescu
D.
, and
Christie
H. D.
.
1998
. “
Shear Behaviour of Railway Ballast Based on Large-Scale Triaxial Tests
.”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
5
(May):
439
449
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(439)
45.
Japanese Industrial Standard (JIS).
1992
.
Iron and Steel Slag for Road Construction. A5015
Japan
:
Japanese Standards Association
, Tokyo, Japan. approved
1992
.
46.
Jia
,
W.
,
Markine
V. L.
, and
Jing
G.
.
2021
. “
Analysis of Furnace Slag in Railway Sub-ballast Based on Experimental Tests and DEM Simulations
.”
Construction and Building Materials
288
(June): 123114. https://doi.org/10.1016/j.conbuildmat.2021.123114
47.
Kambole
,
C.
,
Paige-Green
P.
,
Kupolati
W. K.
,
Ndambuki
J. M.
, and
Adeboje
A. O.
.
2017
. “
Basic Oxygen Furnace Slag for Road Pavements: A Review of Material Characteristics and Performance for Effective Utilization in Southern Africa
.”
Construction and Building Materials
148
:
618
631
. https://doi.org/10.1016/j.conbuildmat.2017.05.036
48.
Kamei
,
T.
,
Ahmed
A.
,
Horai
H.
, and
Ugai
K.
.
2015
. “
A Novel Solidification Technique for Fluorine-Contaminated Bassanite Using Waste Materials in Ground Improvement Applications
.”
Journal of Material Cycles and Waste Management
17
, no. 
2
(April):
380
390
. https://doi.org/10.1007/s10163-014-0251-0
49.
Kamei
,
T.
,
Ahmed
A.
, and
El Naggar
M. H.
.
2018
. “
Performance of Ground Improvement Projects Incorporating Sustainable Reuse of Geo-composite Wastes
.”
Transportation Geotechnics
14
:
22
28
. https://doi.org/10.1016/j.trgeo.2017.09.003
50.
Kumar
,
P.
,
Kumar
S.
,
Marutiram
K.
, and
Prasad
S.
.
2017
. “
Pilot-Scale Steam Aging of Steel Slags
.”
Waste Management & Research: The Journal for a Sustainable Circular Economy
35
, no. 
6
(June):
602
609
, https://doi.org/10.1177/0734242X17694247
51.
Lini Dev
,
K.
,
Pillai
R. J.
, and
Robinson
R. G.
.
2016
. “
Drained Angle of Internal Friction from Direct Shear and Triaxial Compression Tests
.”
International Journal of Geotechnical Engineering
10
, no. 
3
(January 2016):
283
287
. https://doi.org/10.1080/19386362.2015.1133754
52.
Lopes
,
E. C.
,
da Silva
T. O.
,
Pitanga
H. N.
,
Pedroti
L. G.
,
Carvalho
J. M. F.
,
Nalon
G. H.
,
Lima
G. E. S.
, and
Araújo
E. N. D.
.
2023
. “
Stabilisation of Clayey and Sandy Soils with Ladle Furnace Slag Fines for Road Construction
.”
Road Materials and Pavement Design
24
, no. 
1
(January 2022):
247
266
. https://doi.org/10.1080/14680629.2021.2017328
53.
Lopez
,
F. A.
,
Formoso
A.
, and
Medina
F.
.
1989
. “
Escórias LD. Coprodutos de la indústria siderúrgica – I Parte. Composición, tratamiento y aplicaciones
” (in Spanish).
Revista de Metalurgia
25
, no. 
4
:
247
254
.
54.
Maghool
,
F.
,
Arulrajah
A.
,
Horpibulsuk
S.
, and
Du
Y. J.
.
2016
. “
Laboratory Evaluation of Ladle Furnace Slag in Unbound Pavement-Base/Subbase Applications
.”
Journal of Materials and Civil Engineering
29
, no. 
2
(February): 04016197. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001724
55.
Maghool
,
F.
,
Arulrajah
A.
,
Suksiripattanapong
C.
,
Horpibulsuk
S.
, and
Mohajerani
A.
.
2019
. “
Geotechnical Properties of Steel Slag Aggregates: Shear Strength and Stiffness
.”
Soils and Foundations
59
, no. 
5
(October):
1591
1601
. https://doi.org/10.1016/j.sandf.2019.03.016
56.
Mahieux
,
P. Y.
,
Aubert
J. E.
, and
Escadeillas
G.
.
2009
. “
Utilization of Weathered Basic Oxygen Furnace Slag in the Production of Hydraulic Road Binders
.”
Construction and Building Materials
23
, no. 
2
(February):
742
747
. https://doi.org/10.1016/j.conbuildmat.2008.02.015
57.
Manso
,
J.
,
Losañez
M.
,
Polanco
J. A.
, and
González
J. J.
.
2005
. “
Ladle Furnace Slag in Construction
.”
Journal of Materials in Civil Engineering
17
, no. 
5
(October):
513
518
. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(513)
58.
Manso
,
J. M.
,
Polanco
J. A.
,
Losañez
M.
, and
González
J. J.
.
2006
. “
Durability of Concrete Made with EAF Slag as Aggregate
.”
Cement and Concrete Composites
28
, no. 
6
(July):
528
534
. https://doi.org/10.1016/j.cemconcomp.2006.02.008
59.
Mombelli
,
D.
,
Mapelli
C.
,
Barella
S.
,
Di Cecca
C.
,
Le Saout
G.
, and
Garcia-Diaz
E.
.
2016
. “
The Effect of Chemical Composition on the Leaching Behaviour of Electric Arc Furnace (EAF) Carbon Steel Slag during a Standard Leaching Test
.”
Journal of Environmental Chemical Engineering
4
, no. 
1
(March):
1050
1060
. https://doi.org/10.1016/j.jece.2015.09.018
60.
Montenegro
,
J. M.
,
Celemín-Matachana
M.
,
Cañizal
J.
, and
Setién
J.
.
2013
. “
Ladle Furnace Slag in Construction of Embankments: Expansive Behavior
.”
Journal of Materials in Civil Engineering
25
, no. 
8
(August):
972
979
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000642
61.
MT.
1994
.
Steel Mill Slags Suitable for Highway Pavement Layers
. DNER-EM 262/94 (in Portuguese). Brasília, Brazil:
Ministério dos Transportes
, approved
1994
. https://doi.org/https://web.archive.org/web/20230616012515/https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-normas/coletanea-de-normas/especificacao-de-material-em/dner_em_262_94.pdf
62.
Naidu
,
T. S.
,
Sheridan
C. M.
, and
Van Dyk
L. D.
.
2020
. “
Basic Oxygen Furnace Slag: Review of Current and Potential Uses
.”
Minerals Engineering
149
: 106234. https://doi.org/10.1016/j.mineng.2020.106234
63.
Nicolae
,
M.
,
Vîlciu
I.
, and
Zăman
F.
.
2007
. “
X-ray Diffraction Analysis of Steel Slag and Blast Furnace Slag Viewing Their Use for Road Construction
.”
UPB Scientific Bulletin Series B
69
, no. 
2
:
99
108
.
64.
NSA - National Slag Association.
2014
. “
National Slag Association
.”
National Slag Association
. https://doi.org/https://web.archive.org/web/20230616001305/https://nationalslag.org/
65.
Northern Territory Government.
2015
.
Standard Specification for Roadworks 2015/2016
.
Palmerston, Australia
:
Northern Territory Government
, approved
2015
.
66.
Onyelowe
,
K. C.
2019
. “
Review on the Role of Solid Waste Materials in Soft Soils Reengineering
.”
Materials Science for Energy Technologies
2
, no. 
1
(April):
46
51
. https://doi.org/10.1016/j.mset.2018.10.004
67.
Paixão
,
A.
and
Fortunato
E.
.
2021
. “
Abrasion Evolution of Steel Furnace Slag Aggregate for Railway Ballast: 3D Morphology Analysis of Scanned Particles by Close-Range Photogrammetry
.”
Construction and Building Materials
267
: 121225. https://doi.org/10.1016/j.conbuildmat.2020.121225
68.
Parron-Rubio
,
M. E.
,
Perez-Garcia
F.
,
Gonzalez-Herrera
A.
,
Oliveira
M. J.
, and
Rubio-Cintas
M. D.
.
2019
. “
Slag Substitution as a Cementing Material in Concrete: Mechanical, Physical and Environmental Properties
.”
Materials
12
, no. 
18
(September): 2845. https://doi.org/10.3390/ma12182845
69.
Pasetto
,
M.
and
Baldo
N.
.
2011
. “
Mix Design and Performance Characterization of Bituminous Mixtures with Electric Arc Furnace Steel Slags
.” In
Fifth International Conference, Bituminous Mixtures and Pavements
,
748
757
.
Thessalonki, Greece
:
University of Thessaloniki
.
70.
Paute
,
J. L.
,
Jouve
P.
, and
Martinez
J.
.
1988
. “
Ragneau E. Modèle de calcul pour le dimensionnement des chaussées souples [Calculation Model for Flexible Pavements Design]
” (in French).
Bulletin de Liaison des Laboratoires des Ponts et Chaussées
156
:
180
188
.
71.
Pellegrino
,
C.
,
Cavagnis
P.
,
Faleschini
F.
, and
Brunelli
K.
.
2013
. “
Properties of Concretes with Black/Oxidizing Electric Arc Furnace Slag Aggregate
.”
Cement and Concrete Composites
37
(March):
232
240
. https://doi.org/10.1016/j.cemconcomp.2012.09.001
72.
Pellegrino
,
C.
and
Gaddo
V.
.
2009
. “
Mechanical and Durability Characteristics of Concrete Containing EAF Slag as Aggregate
.”
Cement and Concrete Composites
31
, no. 
9
(October):
663
671
. https://doi.org/10.1016/j.cemconcomp.2009.05.006
73.
Piatak
,
N. M.
,
Parsons
M. B.
, and
Seal
R. R.
 II
.
2015
. “
Characteristics and Environmental Aspects of Slag: A Review
.”
Applied Geochemistry
57
(June):
236
266
. https://doi.org/10.1016/j.apgeochem.2014.04.009
74.
Pennsylvania Testing Method.
1978
.
Test Method for Assessment of the Expansion Potential of Steel Slag - Pennsylvania Testing Method
. PTM 130. Harrisburg, PA:
Pennsylvania Department of Transportation
, approved 1978.
75.
Reddy
,
A. S.
,
Pradhan
R. K.
, and
Chandra
S.
.
2006
. “
Utilization of Basic Oxygen Furnace (BOF) Slag in the Production of a Hydraulic Cement Binder
.”
International Journal of Mineral Processing
79
, no. 
2
(May):
98
105
. https://doi.org/10.1016/j.minpro.2006.01.001
76.
Reuter
,
M.
,
Xiao
Y.
, and
Boin
U.
.
2004
. “
Recycling and Environmental Issues of Metallurgical Slags and Salt Fluxes
.” In
VII International Conference on Molten Slags Fluxes and Salts, the South African Institute of Mining and Metallurgy
,
349
356
.
Delft, the Netherlands
:
Delft University of Technology
.
77.
Roque
,
A. J.
,
Castro
F.
,
Correia
A. G.
,
Silva
S.
, and
Cavalheiro
A.
.
2010
. “
Laboratory and Field Leaching Tests for Predicting the Environmental Impact of Portuguese Steel Slag
.” In
Proceedings of the Sixth International Congress on Environmental Geotechnics
,
1166
1171
.
New Delhi, India
.
78.
Saha
,
S.
,
Sarkar
S.
, and
Sinha
A.
.
2019
. “
Use of Basic Oxygen Furnace (BOF) Steel Slag for Acid Mine Drainage Treatment: A Laboratory Study
.”
Mine Water and the Environment
38
, no. 
3
(September):
517
527
. https://doi.org/10.1007/s10230-019-00615-3
79.
SAMARIS.
2006
.
Deliverable 29 – Guide on Techniques for Recycling in Pavement Structures, SAMARIS Project - Sustainable and Advanced Materials for Road Infrastructure, Competitive and Sustainable Growth (GROWTH) Programme, SAMARIS SAM-D32
. European Commission Fifth Framework Program.
80.
Santamaria
,
A.
,
Faleschini
F.
,
Giacomello
G.
,
Brunelli
K.
,
José
J. T. S.
,
Pellegrino
C.
, and
Pasetto
M.
.
2018
. “
Dimensional Stability of Electric Arc Furnace Slag in Civil Engineering Applications
.”
Journal of Cleaner Production
205
:
599
609
. https://doi.org/10.1016/j.jclepro.2018.09.122
81.
Sasaki
,
T.
and
Hamazaki
T.
.
2015
.
Development of Steam-Aging Process for Steel Slag, TECHNICAL REPORT No. 109
(Tokyo: NIPPON STEEL & SUMITOMO METAL,
2015
).
82.
Serjun
,
V. M.
and
Mladenovic
A. B.
.
2013
. “
Evaluation of Ladle Slags as a Potential Material for Building and Civil Engineering
.”
Materiali in Tehnologije
47
, no. 
5
(March):
543
550
.
83.
Setién
,
J.
,
Hernández
D.
, and
González
J. J.
.
2009
. “
Characterization of Ladle Furnace Basic Slag for Use as a Construction Material
.”
Construction and Building Materials
23
, no. 
5
(May):
1788
1794
. https://doi.org/10.1016/j.conbuildmat.2008.10.003
84.
Simmons
,
J.
,
Ziemkiewicz
P.
, and
Black
D.
.
2002
. “
Use of Steel Slag Leach Beds for the Treatment of Acid Mine Drainage: The McCarty Highwall Project
.” In
Proceedings of the 19th America Society of Mining and Reclamation Conference
,
527
538
. Lexington, KY:
American Society of Mining and Reclamation
. https://doi.org/10.21000/JASMR02010527
85.
Singh
,
K. S.
,
Vashistha
P.
,
Chandra
R.
, and
Rai
A. K.
.
2021
. “
Study on Leaching of Electric Arc Furnace (EAF) Slag for Its Sustainable Applications as Construction Material
.”
Process Safety and Environmental Protection
148
(April):
1315
1326
. https://doi.org/10.1016/j.psep.2021.01.039
86.
Sorlini
,
S.
,
Sanzeni
A.
, and
Rondi
L.
.
2012
. “
Reuse of Steel Slag in Bituminous Paving Mixtures
.”
Journal of Hazardous Materials
209
210
:
84
91
. https://doi.org/10.1016/j.jhazmat.2011.12.066
87.
Ter Teo
,
P.
,
Seman
A. A.
,
Basu
P.
, and
Sharif
N. M.
.
2016
. “
Characterization of EAF Steel Slag Waste: The Potential Green Resource for Ceramic Tile Production
.”
Procedia Chemistry
19
:
842
846
. https://doi.org/10.1016/j.proche.2016.03.111
88.
Tossavainen
,
M.
,
Engstrom
F.
,
Yang
Q.
,
Menad
N.
,
Lidstrom Larsson
M.
, and
Bjorkman
B.
.
2007
. “
Characteristics of Steel Slag under Different Cooling Conditions
.”
Waste Management
27
, no. 
10
(September 2006):
1335
1344
. https://doi.org/10.1016/j.wasman.2006.08.002
89.
Varanasi
,
S. S.
,
More
V. M. R.
,
Rao
M. B. V.
,
Alli
S. R.
,
Tangudu
A. K.
, and
Santanu
D.
.
2019
. “
Recycling Ladle Furnace Slag as Flux in Steelmaking: A Review
.”
Journal of Sustainable Metallurgy
5
, no. 
4
(December):
449
462
. https://doi.org/10.1007/s40831-019-00243-9
90.
Waligora
,
J.
,
Bulteel
D.
,
Degrugilliers
P.
,
Damidot
D.
,
Potdevin
J. L.
, and
Measson
M.
.
2010
. “
Chemical and Mineralogical Characterizations of LD Converter Steel Slags: A Multi-analytical Techniques Approach
.”
Materials Characterization
61
, no. 
1
(January):
39
48
. https://doi.org/10.1016/j.matchar.2009.10.004
91.
Werkmeister
,
S.
Permanent Deformation Behaviour of Unbound Granular Materials in Pavement Constructions
.” PhD diss.,
Technischen Universität Dresden
,
2003
.
92.
93.
Yi
,
H.
,
Xu
G.
,
Cheng
H.
,
Wang
J.
,
Wan
Y.
, and
Chen
H.
.
2012
. “
An Overview of Utilization of Steel Slag
.”
Procedia Environmental Sciences
16
:
791
801
. https://doi.org/10.1016/j.proenv.2012.10.108
94.
Yildirim
,
I. Z.
and
Prezzi
M.
.
2011
. “
Chemical, Mineralogical, and Morphological Properties of Steel Slag
.”
Advances in Civil Engineering
2011
: 463638. https://doi.org/10.1155/2011/463638
95.
Yildirim
,
I. Z.
and
Prezzi
M.
.
2015
. “
Geotechnical Properties of Fresh and Aged Basic Oxygen Furnace Steel Slag
.”
Journal of Materials in Civil Engineering
27
, no. 
12
(December): 04015046. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001310
96.
Yildirim
,
I. Z.
and
Prezzi
M.
.
2017
. “
Experimental Evaluation of EAF Ladle Steel Slag as a Geo-fill Material: Mineralogical, Physical & Mechanical Properties
.”
Construction and Building Materials
154
:
23
33
. https://doi.org/10.1016/j.conbuildmat.2017.07.149
97.
Yuji
,
W.
1986
. “
The Effect of Hydration Products in Steam Treated Steel Slag on the Hydration of Steel Slag-Portland Cement
.”
Congresso Internacional de Química do Cimento
8
:
36
40
.
This content is only available via PDF.
You do not currently have access to this content.