Abstract

Rock cores drilled under high in situ stress environments are inevitably permanently damaged due to the stress relief, which significantly affects the evaluation of the physical and mechanical properties of deep rocks. Quantitatively correlating this sampling damage with in situ stress distribution is challenging because of the complexity of the geological environment and the diversity of rock materials. To address this challenge, a laboratory test apparatus has been developed that can apply specific pressure to shallow rock materials to simulate high in situ stress environments and drilling–coring to simulate the sampling process of deep rock masses. The results of verification tests demonstrate that the integrity of cores gradually deteriorated as the sampling confining pressure increased. Moreover, simultaneous increases in the density and size of microcracks were observed within the cores, where these microcracks propagate through grain boundaries, generate intragrain and transgranular microcracks, extend outwardly to form macroscopic cracks, and enhance porosity. These findings confirm the applicability of the apparatus for conducting quantitative sampling damage studies. In the future, further investigations using the apparatus will be conducted to explore the mechanical attenuation patterns of rock cores, thereby providing a reference to evaluate rock mechanics parameters for engineering practices.

References

1.
An
,
L.
,
Jin
C. Y.
,
Liu
D.
,
Ding
C. G.
, and
Dai
X. H.
.
2018
. “
Mechanism of Core Discing in the Relaxation Zone around an Underground Opening under High In Situ Stresses
.”
Bulletin of Engineering Geology and the Environment
77
, no. 
3
(August):
1179
1189
. https://doi.org/10.1007/s10064-017-1168-3
2.
Bankwitz
,
P.
and
Bankwitz
E.
.
1997
. “
Fractographic Features on Joints in KTB Drill Cores as Indicators of the Contemporary Stress Orientation
.”
Geologische Rundschau
86
, no. 
S1
(June):
S34
S44
. https://doi.org/10.1007/PL00014664
3.
Brace
,
W. F.
,
Silver
E.
,
Hadley
K.
, and
Goetze
C.
.
1972
. “
Cracks and Pores: A Closer Look
.”
Science
178
, no. 
4057
(October):
162
164
. https://doi.org/10.1126/science.178.4057.162
4.
Dyke
,
C. G.
1989
. “
Core Discing: Its Potential as an Indicator of Principal In Situ Stress Directions
.” In
Proceedings of ISRM–SPE International Symposium Rock at Great Depth
, edited by
Maury
V.
, and
Fourmaintraux
D.
,
1057
1064
.
Rotterdam, the Netherlands
:
A. A. Balkema
.
5.
Everitt
,
R. A.
and
Lajtai
E. Z.
.
2004
. “
The Influence of Rock Fabric on Excavation Damage in the Lac du Bonnet Granite
.”
International Journal of Rock Mechanics and Mining Sciences
41
, no. 
8
(December):
1277
1303
. https://doi.org/10.1016/j.ijrmms.2004.09.013
6.
Gale
,
J. F. W.
,
Elliott
S. J.
, and
Laubach
S. E.
.
2018
. “
Hydraulic Fractures in Core from Stimulated Reservoirs: Core Fracture Description of HFTS Slant Core, Midland Basin, West Texas
.” In
Proceedings of the Sixth Unconventional Resources Technology Conference
,
1340
1357
.
Houston, TX
:
Society of Exploration Geophysicists
. https://doi.org/10.15530/urtec-2018-2902624
7.
Hakala
,
M.
1999
.
Numerical Study on Core Damage and Interpretation of In-Situ State of Stress, Technical Report POSIVA-99-25
.
Helsinki, Finland
:
Posiva Oy
.
8.
Holt
,
R. M.
,
Brignoli
M.
,
Kenter
C. J.
,
Meij
R.
, and
Schutjens
P. M. T. M.
.
1998
. “
From Core Compaction to Reservoir Compaction: Correction for Core Damage Effects
.” In
SPE/ISRM Rock Mechanics in Petroleum Engineering
,
311
320
.
Richardson, TX
:
Society of Petroleum Engineers
.
9.
Holt
,
R. M.
,
Brignoli
M.
, and
Kenter
C. J.
.
2000
. “
Core Quality: Quantification of Coring-Induced Rock Alteration
.”
International Journal of Rock Mechanics and Mining Sciences
37
, no. 
6
(September):
889
907
. https://doi.org/10.1016/S1365-1609(00)00009-5
10.
Jaeger
,
J. C.
and
Cook
N. G. W.
.
1963
. “
Pinching-Off and Disking of Rocks
.”
Journal of Geophysical Research
68
, no. 
6
(March):
1759
1765
. https://doi.org/10.1029/JZ068i006p01759
11.
Kaga
,
N.
,
Matsuki
K.
, and
Sakaguchi
K.
.
2003
. “
The In Situ Stress States Associated with Core Discing Estimated by Analysis of Principal Tensile Stress
.”
International Journal of Rock Mechanics and Mining Sciences
40
, no. 
5
(July):
653
665
. https://doi.org/10.1016/S1365-1609(03)00057-1
12.
Kulander
,
B. R.
,
Dean
S. L.
, and
Ward
B. J.
 Jr.
1990
.
Fractured Core Analysis: Interpretation, Logging, and Use of Natural and Induced Fractures in Core
.
Tulsa, OK
:
American Association of Petroleum Geologists
. https://doi.org/10.1306/Mth8516.
13.
Li
,
Y.
and
Schmitt
D. R.
.
1997
. “
Effects of Poisson’s Ratio and Core Stub Length on Bottomhole Stress Concentrations
.”
International Journal of Rock Mechanics and Mining Sciences
34
, no. 
5
(July):
761
773
. https://doi.org/10.1016/S1365-1609(97)00001-6
14.
Li
,
Y.
and
Schmitt
D. R.
.
1998
. “
Drilling-Induced Core Fractures and In Situ Stress
.”
Journal of Geophysical Research
103
, no. 
B3
(March):
5225
5239
. https://doi.org/10.1029/97JB02333
15.
Lim
,
S. S.
,
Martin
C. D.
, and
Åkesson
U.
.
2012
. “
In-Situ Stress and Microcracking in Granite Cores with Depth
.”
Engineering Geology
147–148
, (October):
1
13
. https://doi.org/10.1016/j.enggeo.2012.07.006
16.
Lin
,
C.
and
Zou
D. H. S.
.
2021
. “
Formulation and Verification of 3D In-Situ Stress Estimation Based on Differential-Direction Drilling
.”
International Journal of Rock Mechanics and Mining Sciences
145
(September): 104833. https://doi.org/10.1016/j.ijrmms.2021.104833
17.
Martin
,
C. D.
and
Stimpson
B.
.
1994
. “
The Effect of Sample Disturbance on Laboratory Properties of Lac du Bonnet Granite
.”
Canadian Geotechnical Journal
31
, no. 
5
(October):
692
702
. https://doi.org/10.1139/t94-081
18.
Martin
,
C. D.
,
Read
R. S.
, and
Martino
J. B.
.
1997
. “
Observations of Brittle Failure around a Circular Test Tunnel
.”
International Journal of Rock Mechanics and Mining Sciences
34
, no. 
7
(October):
1065
1073
. https://doi.org/10.1016/S1365-1609(97)90200-8
19.
Matsuki
,
K.
,
Kaga
N.
,
Yokoyama
T.
, and
Tsuda
N.
.
2004
. “
Determination of Three Dimensional In Situ Stress from Core Discing Based on Analysis of Principal Tensile Stress
.”
International Journal of Rock Mechanics and Mining Sciences
41
, no. 
7
(October):
1167
1190
. https://doi.org/10.1016/j.ijrmms.2004.05.002
20.
Maury
,
V.
,
Santarelli
F. J.
, and
Henry
J. P.
.
1988
. “
Core Discing: A Review
.” In
Proceedings of First Regional ISRM Symposium for Africa: Rock Mechanics in Africa
,
221
231
.
Swaziland, Africa
:
South African National Group on Rock Mechanics
. https://doi.org/10.1016/0148-9062(90)95083-D
21.
Obert
,
L.
and
Stephenson
D. E.
.
1965
. “
Stress Conditions under which Core Discing Occurs
.”
Transactions of the Society of Mining Engineers
232
, no. 
3
(September):
227
235
.
22.
Raterman
,
K. T.
,
Farrell
H. E.
,
Mora
O. S.
,
Janssen
A. L.
,
Gomez
G. A.
,
Busetti
S.
,
McEwen
J.
, et al.
2018
. “
Sampling a Stimulated Rock Volume: An Eagle Ford Example
.”
SPE Reservoir Evaluation & Engineering
21
, no. 
4
(November):
927
941
. https://doi.org/10.2118/191375-PA
23.
Raterman
,
K. T.
,
Liu
Y.
, and
Warren
L.
.
2019
. “
Analysis of a Drained Rock Volume: An Eagle Ford Example
.” In
Proceedings of the Seventh Unconventional Resources Technology Conference
,
4106
4125
.
Houston, TX
:
Society of Exploration Geophysicists
. https://doi.org/10.15530/urtec-2019-263
24.
Tan
,
J.
,
Li
C.
,
Zhou
J.-Q.
, and
Tang
H.
.
2023
. “
On Non-Darcian Flow Behavior in a Rough-Walled Fracture Filled with a Porous Medium
.”
Journal of Hydrology
616
(January): 128778. https://doi.org/10.1016/j.jhydrol.2022.128778
25.
Ulusay
,
R.
and
Hudson
J. A.
.
2007
.
The Complete ISRM Suggested Methods For Rock Characterization, Testing and Monitoring: 1974-2006
.
Ankara, Turkey
:
ISRM Turkish National Group
.
26.
Underwood
,
E. E.
1970
.
Quantitative Stereology
.
Boston, MA
:
Addison Wesley
.
27.
Wilk
,
S. T.
Investigation of Core Failure during Excavation
. Master’s thesis,
University of Minnesota
,
2012
.
28.
Yan
,
P.
,
Lu
W. B.
,
Chen
M.
,
Shan
Z. G.
,
Chen
X. R.
, and
Zhou
Y.
.
2012
. “
Damage-Free Coring Technique for Rock Mass under High In-Situ Stresses
.”
Journal of Rock Mechanics and Geotechnical Engineering
4
, no. 
1
(April):
44
53
. https://doi.org/10.3724/SP.J.1235.2012.00044
29.
Yan
,
P.
,
He
Q.
,
Lu
W. B.
,
He
Y. L.
,
Zhou
W.
, and
Chen
M.
.
2017
. “
Coring Damage Extent of Rock Cores Retrieved from High In-Situ Stress Condition: A Case Study
.”
KSCE Journal of Civil Engineering
21
, no. 
7
(November):
2946
2957
. https://doi.org/10.1007/s12205-017-1660-0
This content is only available via PDF.
You do not currently have access to this content.