Abstract

This study compares how geosynthetics behave under load, under strain, and over time when subjected to confined tensile tests in soil, employing two commonly used mechanisms in research. One test type simulates a reinforced layer, where tensile loads are indirectly applied to the geosynthetic via stresses transferred from the soil. In contrast, the other test applies tensile loads directly to the geosynthetic material using clamps while under soil confinement. The objective is to elucidate how these testing mechanisms might yield differing in-soil tensile characteristics for different geosynthetics. The study involved conducting load-strain-time tests on samples of nonwoven and woven geotextiles, as well as a geogrid, under varying sustained loads over a 120-h period within a sand clay soil providing soil confinement to geosynthetics at different surcharge levels. The results suggest that soil confinement plays a significant role in shaping the load-strain-time behavior of geosynthetics. Furthermore, it was noted that the impact of testing mechanisms on this behavior is contingent upon the type and stiffness of the geosynthetics, as well as their interaction with the confining soil. In general, in-soil tests in which tensile loads are mobilized by geosynthetics and transferred from the soil provide more confident results for better simulating operation conditions. Tests that directly apply tensile loads to the geosynthetic while maintaining stationary soil confinement may yield misleading results, especially for geosynthetics that have poor interaction with the soil.

References

1.
Allen
,
T. M.
,
Bathurst
R. J.
,
Holtz
R. D.
,
Walters
D.
, and
Lee
W. F.
.
2003
. “
A New Working Stress Method for Prediction of Reinforcement Loads in Geosynthetic Walls
.”
Canadian Geotechnical Journal
40
, no. 
5
(October):
976
994
. https://doi.org/10.1139/t03-051
2.
ASTM International.
2015
.
Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-rib Tensile Method
. ASTM D6637/D6637M15. West Conshohocken, PA:
ASTM International
, approved July 15,
2015
. https://doi.org/10.1520/D6637_D6637M-15
3.
ASTM International.
2017
.
Standard Test Methods for Tensile Properties of Geotextiles by the Wide-Width Strip Method
. ASTM D4595-17. West Conshohocken, PA:
ASTM International
, approved June 1,
2017
. https://doi.org/10.1520/D4595-17
4.
ASTM International.
2021
.
Standard Test Method for Evaluating the Unconfined Tension Creep Behavior of Geosynthetics
. ASTM D5262. West Conshohocken, PA:
ASTM International
, approved February 15,
2021
. https://doi.org/10.1520/D5262-21
5.
Balakrishnan
,
S.
and
Viswanadham
B. V. S.
.
2017
. “
Evaluation of Tensile Load-Strain Characteristics of Geogrids through In-Soil Tensile Tests
.”
Geotextiles and Geomembranes
45
, no. 
1
(February):
35
44
. https://doi.org/10.1016/j.geotexmem.2016.07.002
6.
Bathurst
,
R. J.
,
Nernheim
A.
,
Walters
D. L.
,
Allen
T. M.
,
Burgess
P.
, and
Saunders
D. D.
.
2009
. “
Influence of Reinforcement Stiffness and Compaction on the Performance of Four Geosynthetic Reinforced Soil Walls
.”
Geosynthetics International
16
, no. 
1
(February):
43
59
. https://doi.org/10.1680/gein.2009.16.1.43
7.
Boyle
,
S. R.
,
Gallagher
M.
, and
Holtz
R. D.
.
1996
. “
Influence of Strain Rate, Specimen Length and Confinement on Measured Geotextile Properties
.”
Geosynthetics International
3
, no. 
2
(January):
205
225
. https://doi.org/10.1680/gein.3.0060
8.
Christopher
,
B. R.
,
Holtz
R. D.
, and
Bell
W. D.
.
1986
. “
New Tests for Determining the In-Soil Stress-Strain Properties of Geotextiles
.” In
Third International Conference on Geotextiles
,
683
688
. Vienna, Austria:
The International Geosynthetics Society
.
9.
Costa
,
C. M. L.
and
Zornberg
J. G.
.
2021
. “
Novel Experimental Techniques to Assess the Time-Dependent Deformations of Geosynthetics under Soil Confinement
.”
Journal of Rock Mechanics and Geotechnical Engineering
13
, no. 
2
(April):
410
419
. https://doi.org/10.1016/j.jrmge.2020.09.006
10.
den Hoedt
,
G.
1986
. “
Creep and Relaxation of Geotextile Fabrics
.”
Geotextiles and Geomembranes
4
, no. 
2
:
83
92
. https://doi.org/10.1016/0266-1144(86)90017-8
11.
Derksen
,
J.
,
Ziegler
M.
, and
Fuentes
R.
.
2021
. “
Geogrid-Soil Interaction: A New Conceptual Model and Testing Apparatus
.”
Geotextiles and Geomembranes
49
, no. 
5
(October):
1393
1406
. https://doi.org/10.1016/j.geotexmem.2021.05.011
12.
França
,
F. A. N.
and
Bueno
B. S.
.
2011
. “
Creep Behavior of Geosynthetics Using Confined-Accelerated Tests
.”
Geosynthetics International
18
, no. 
5
(October):
242
254
. https://doi.org/10.1680/gein.2011.18.5.242
13.
Huang
,
B.
,
Bathurst
R. J.
, and
Hatami
K.
.
2007
. “
Numerical Study of the Influence of Block Interface Stiffness on Reinforced Soil Segmental Walls of Variable Height
.” In
OttawaGeo 2007: 60th Canadian Geotechnical Conference and Eighth Joint CGS/IAH-CNC Groundwater Conference
,
2167
2174
. Vancouver, Canada:
Canadian Geotechnical Society
.
14.
Huang
,
B.
,
Bathurst
R. J.
, and
Hatami
K.
. n.d. “
Numerical Study of the Influence of Reinforcement Length and Spacing on Reinforced Soil Segmental Walls of Variable Height
.” Paper presented at the First Pan American Geosynthetics Conference and Exhibition, Cancun, Mexico, March 2–5,
2008
.
15.
Kokkalis
,
A.
and
Papacharisis
N.
.
1989
. “
A Simple Laboratory Method to Estimate the In-Soil Behavior of Geotextiles
.”
Geotextiles and Geomembranes
8
, no. 
2
:
147
157
. https://doi.org/10.1016/0266-1144(89)90025-3
16.
Leshchinsky
,
D.
and
Field
D. A.
.
1987
. “
In-Soil Load Elongation, Tensile Strength and Interface Friction of Non-woven Geotextiles
.”
In Geosynthetics ’87, 238–249
.
St. Paul, MN
:
Industrial Fabrics Association International
.
17.
Ling
,
H. I.
,
Wu
J. T. H.
, and
Tatsuoka
F.
.
1992
. “
Short-Term Strength Deformation Characteristics of Geotextiles under Typical Operational Conditions
.”
Geotextiles and Geomembranes
11
, no. 
2
:
185
219
. https://doi.org/10.1016/0266-1144(92)90043-A
18.
McGown
,
A.
,
Andrawes
K. Z.
, and
Kabir
M. H.
.
1982
. “
Load-Extension Testing of Geotextiles Confined in Soil
.” In
Second International Conference on Geotextiles
, Vol. 
3
,
793
798
. St. Paul, MN:
Industrial Fabrics Association International
.
19.
Mendes
,
M. J. A.
,
Palmeira
E. M.
, and
Matheus
E.
.
2007
. “
Some Factors Affecting the In-Soil Load–Strain Behaviour of Virgin and Damaged Nonwoven Geotextiles
.”
Geosynthetics International
14
, no. 
1
(February):
39
50
. https://doi.org/10.1680/gein.2007.14.1.39
20.
Plácido
,
R. R.
,
Portelinha
F. H. M.
, and
Futai
M. M.
.
2018
. “
Field and Laboratory Time-Dependent Behaviors of Geotextiles in Reinforced Soil Walls
.”
Geosynthetics International
25
, no. 
2
(April):
215
229
. https://doi.org/10.1680/jgein.18.00003
21.
Portelinha
,
F. H. M.
,
Santos
M. C.
, and
Futai
M. M.
.
2021
. “
A Laboratory Device to Evaluate Geosynthetic Load-Strain Behaviour in MSE Walls
.”
Geosynthetics International
28
, no. 
1
(February):
32
47
. https://doi.org/10.1680/jgein.20.00025
22.
Siel
,
B. D.
,
Tzong
W. H.
, and
Chou
N. N. S.
.
1987
. “
In-Soil Stress-Strain Behavior or Geotextiles
.” In
Geosynthetics ’87, 260–265
.
St. Paul, MN
:
Industrial Fabrics Association International
.
23.
Tatsuoka
,
F.
and
Yamauchi
H.
.
1986
. “
A Reinforcing Method for Steep Clay Slopes Using a Nonwoven Geotextile
.”
Geotextiles and Geomembranes
4
, nos. 
3–4
:
241
268
. https://doi.org/10.1016/0266-1144(86)90044-0
24.
Walters
,
D. L.
,
Allen
T. M.
, and
Bathurst
R. J.
.
2002
. “
Conversion of Geosynthetic Strain to Load Using Reinforcement Stiffness
.”
Geosynthetics International
9
, nos. 
5–6
(January):
483
523
. https://doi.org/10.1680/gein.9.0226
25.
Whittle
,
A. J.
,
Larson
D. G.
,
Germaine
J. T.
, and
Abramento
M.
.
1993
. “
A New Device for Evaluating Load-Transfer in Geosynthetic Reinforced Soils
.” In
Geosynthetic Soil Reinforcement Testing Procedures
, edited by
Cheng
S.-C.
, 1–15. West Conshohocken, PA:
ASTM International
. https://doi.org/10.1520/STP24309S
26.
Wilson-Fahmy
,
R. F.
,
Koerner
R. M.
, and
Fleck
J. A.
.
1993
. “
Unconfined and Confined Wide Width Tension Testing of Geosynthetics
.” In
Geosynthetic Soil Reinforcement Testing Procedures
, edited by
Johnathan Cheng
S. C.
,
49
63
. West Conshohocken, PA:
ASTM International
. https://doi.org/10.1520/STP24312S
27.
Wu
,
J. T. H.
1991
. “
Measuring Inherent Load-Extension Properties of Geotextiles for Design of Reinforced Structures
.”
Geotechnical Testing Journal
14
, no. 
2
(June):
157
165
. https://doi.org/10.1520/GTJ10557J
28.
Wu
,
J. T. H.
and
Helwany
S. M. B.
.
1996
. “
A Performance Test for Assessment of Long-Term Creep Behavior of Soil-Geosynthetic Composites
.”
Geosynthetics International
3
, no. 
1
(January):
107
124
. https://doi.org/10.1680/gein.3.0056
29.
Zornberg
,
J. G.
,
Byler
B. R.
, and
Knudsen
J. W.
.
2004
. “
Creep of Geotextiles Using Time-Temperature Superposition Methods
.”
Journal of Geotechnical and Geoenvironmental Engineering
130
, no. 
11
(November):
1158
1168
. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:11(1158)
This content is only available via PDF.
You do not currently have access to this content.