Abstract

Seepage-induced suffusion involves the migration of fine particles within a soil matrix. Seepage flow is affected by the soil permeability anisotropy of anisotropic soil fabric; however, suffusion anisotropy is unclear because of the limited function of existing permeameters. In recent studies, the effect of seepage direction has been investigated under only low hydraulic gradients because the control of seepage direction relies merely on gravity. In this study, a new, large-sized permeameter is developed with which suffusion tests can be conducted along horizontal or vertical seepage directions under high hydraulic gradients. Correspondingly, the permeameter can accommodate a specimen of 540 × 500 × 470 or 540 × 540 × 440 mm3 (length × width × height). The seepage direction is switched by changing the boundary conditions of the specimen with detachable perforated plates that allow pressurized water originating from different inlets to flow along horizontal or vertical directions. Two repeated pairs of tests were performed on a gap-graded clayey gravel to investigate the suffusion anisotropy of saturated clayey gravel. The results show that the maximum relative deviations of measurements for initial hydraulic conductivity, initiation, and failure hydraulic gradients are less than 3.5 %, demonstrating satisfactory reliability. The ratio of the initial horizontal hydraulic conductivity to vertical hydraulic conductivity for the test soil is 13.87, indicating a significantly anisotropic fabric induced by compaction. The ratios of horizontal initiation and failure hydraulic gradients to vertical initiation and failure hydraulic gradients are 0.52 and 0.59, respectively. This implies that suffusion anisotropy should not be neglected for evaluating the internal instability of anisotropic soils.

References

1.
ASTM International.
2017
.
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
. ASTM D2487-17e1. West Conshohocken, PA:
ASTM International
, approved December 15,
2017
. https://doi.org/10.1520/D2487-17E01
2.
ASTM International.
2016
.
Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
. ASTM D5084-16a. West Conshohocken, PA:
ASTM International
, approved August 15,
2016
. https://doi.org/10.1520/D5084-16A
3.
ASTM International.
2021
.
Standard Test Method for Soil Compaction Determination at Shallow Depths Using 2.3-kg [5-lbm] Dynamic Cone Penetrometer
. ASTM D7380M-21. West Conshohocken, PA:
ASTM International
, approved November 1,
2021
. https://doi.org/10.1520/D7380_D7380M-21
4.
Bagarello
,
V.
,
Sferlazza
S.
, and
Sgroi
A.
.
2009
. “
Testing Laboratory Methods to Determine the Anisotropy of Saturated Hydraulic Conductivity in a Sandy-Loam Soil
.”
Geoderma
154
, nos. 
1–2
(December):
52
58
. https://doi.org/10.1016/j.geoderma.2009.09.012
5.
Benamar
,
A.
,
Correia dos Santos
R. N.
,
Bennabi
A.
, and
Karoui
T.
.
2019
. “
Suffusion Evaluation of Coarse-Graded Soils from Rhine Dikes
.”
Acta Geotechnica
14
, no. 
3
(June):
815
823
. https://doi.org/10.1007/s11440-019-00782-1
6.
Bendahmane
,
F.
,
Marot
D.
, and
Alexis
A.
.
2008
. “
Experimental Parametric Study of Suffusion and Backward Erosion
.”
Journal of Geotechnical and Geoenvironmental Engineering
134
, no. 
1
(January):
57
67
. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(57)
7.
Benson
,
C. H.
,
Chen
J. N.
,
Edil
T. B.
, and
Likos
W. J.
.
2018
. “
Hydraulic Conductivity of Compacted Soil Liners Permeated with Coal Combustion Product Leachates
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
4
(April): 04018011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001855
8.
Chang
,
D. S.
and
Zhang
L. M.
.
2011
. “
A Stress-Controlled Erosion Apparatus for Studying Internal Erosion in Soils
.”
Geotechnical Testing Journal
34
, no. 
6
(November):
579
589
. https://doi.org/10.1520/GTJ103889
9.
Chang
,
D. S.
and
Zhang
L. M.
.
2013
. “
Critical Hydraulic Gradients of Internal Erosion under Complex Stress States
.”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
9
(September):
1454
1467
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000871
10.
Chapuis
,
R. P.
,
Gill
D. E.
, and
Baass
K.
.
1989
. “
Laboratory Permeability Tests on Sand: Influence of the Compaction Method on Anisotropy
.”
Canadian Geotechnical Journal
26
, no. 
4
(November):
614
622
. https://doi.org/10.1139/t89-074
11.
Chen
,
R.
,
Lei
W.
, and
Li
Z.
.
2014
. “
Anisotropic Shear Strength Characteristics of a Tailings Sand
.”
Environmental Earth Sciences
71
, no. 
12
(June):
5165
5172
. https://doi.org/10.1007/s12665-013-2918-6
12.
Chen
,
R.
,
Liu
L.
,
Li
Z.
,
Deng
G.
,
Zhang
Y.
, and
Zhang
Y.
.
2021
. “
A Novel Vertical Stress-Controlled Apparatus for Studying Suffusion along Horizontal Seepage through Soils
.”
Acta Geotechnica
16
, no. 
7
(July):
2217
2230
. https://doi.org/10.1007/s11440-021-01164-2
13.
Cheng
,
D.-H.
,
Chen
X.-H.
,
Huo
A.-D.
,
Gao
M.
, and
Wang
W.-K.
.
2013
. “
Influence of Bedding Orientation on the Anisotropy of Hydraulic Conductivity in a Well-Sorted Fluvial Sediment
.”
International Journal of Sediment Research
28
, no. 
1
(March):
118
125
. https://doi.org/10.1016/S1001-6279(13)60024-4
14.
Dassanayake
,
S. M.
and
Mousa
A.
.
2022
. “
Flow Dependent Constriction-Size Distribution in Gap-Graded Soils: A Statistical Interference
.”
Géotechnique Letters
12
, no. 
1
(March):
46
54
. https://doi.org/10.1680/jgele.21.00039
15.
Dassanayake
,
S. M.
,
Mousa
A. A.
,
Ilankoon
S.
, and
Fowmes
G. J.
.
2022
. “
Internal Instability in Soils: A Critical Review of the Fundamentals and Ramifications
.”
Transportation Research Record: Journal of the Transportation Research Board
2676
, no. 
4
(April):
1
26
. https://doi.org/10.1177/03611981211056908
16.
Deng
,
G.
,
Zhang
L.-L.
,
Chen
R.
,
Liu
L.-L.
,
Shu
K.-X.
, and
Zhou
Z.-L.
.
2020
. “
Experimental Investigation on Suffusion Characteristics of Cohesionless Soils along Horizontal Seepage Flow under Controlled Vertical Stress
.”
Frontiers in Earth Science
8
(June): 195. https://doi.org/10.3389/feart.2020.00195
17.
Fannin
,
R. J.
and
Moffat
R.
.
2006
. “
Observations on Internal Stability of Cohesionless Soils
.”
Géotechnique
56
, no. 
7
(September):
497
500
. https://doi.org/10.1680/geot.2006.56.7.497
18.
Horikoshi
,
K.
and
Takahashi
A.
.
2015
. “
Suffusion-Induced Change in Spatial Distribution of Fine Fractions in Embankment Subjected to Seepage Flow
.”
Soils and Foundations
55
, no. 
5
(October):
1293
1304
. https://doi.org/10.1016/j.sandf.2015.09.027
19.
Huang
,
D.
,
Huang
W.-B.
,
Ke
C.-Y.
, and
Song
Y.-X.
.
2021
. “
Experimental Investigation on Seepage Erosion of the Soil-Rock Interface
.”
Bulletin of Engineering Geology and the Environment
80
, no. 
4
(April):
3115
3137
. https://doi.org/10.1007/s10064-021-02104-w
20.
Indiketiya
,
S.
,
Jegatheesan
P.
, and
Rajeev
P.
.
2017
. “
Evaluation of Defective Sewer Pipe-Induced Internal Erosion and Associated Ground Deformation Using Laboratory Model Test
.”
Canadian Geotechnical Journal
54
, no. 
8
(August):
1184
1195
. https://doi.org/10.1139/cgj-2016-0558
21.
Ke
,
L.
and
Takahashi
A.
.
2012
. “
Strength Reduction of Cohesionless Soil due to Internal Erosion Induced by One-Dimensional Upward Seepage Flow
.”
Soils and Foundations
52
, no. 
4
(August):
698
711
. https://doi.org/10.1016/j.sandf.2012.07.010
22.
Ke
,
L.
and
Takahashi
A.
.
2014
a. “
Experimental Investigations on Suffusion Characteristics and Its Mechanical Consequences on Saturated Cohesionless Soil
.”
Soils and Foundations
54
, no. 
4
(August):
713
730
. https://doi.org/10.1016/j.sandf.2014.06.024
23.
Ke
,
L.
and
Takahashi
A.
.
2014
b. “
Triaxial Erosion Test for Evaluation of Mechanical Consequences of Internal Erosion
.”
Geotechnical Testing Journal
37
, no. 
2
(March):
347
364
. https://doi.org/10.1520/GTJ20130049
24.
Kenney
,
T. C.
and
Lau
D.
.
1985
. “
Internal Stability of Granular Filters
.”
Canadian Geotechnical Journal
22
, no. 
2
(May):
215
225
. https://doi.org/10.1139/t85-029
25.
Kézdi
,
A.
1979
.
Soil Physics: Selected Topics-Developments in Geotechnical Engineering
.
Amsterdam, the Netherlands
:
Elsevier Science Ltd
.
26.
Kovács
,
G.
1981
.
Seepage Hydraulics
, vol. 10. Budapest, Hungary:
Elsevier Science Ltd
.
27.
Li
,
M.
and
Fannin
R. J.
.
2008
. “
Comparison of Two Criteria for Internal Stability of Granular Soil
.”
Canadian Geotechnical Journal
45
, no. 
9
(September):
1303
1309
. https://doi.org/10.1139/T08-046
28.
Liang
,
Y.
,
Jim Yeh
T.-C.
,
Chen
Q.
,
Xu
W.
,
Dang
X.
, and
Hao
Y.
.
2019
. “
Particle Erosion in Suffusion under Isotropic and Anisotropic Stress States
.”
Soils and Foundations
59
, no. 
5
(October):
1371
1384
. https://doi.org/10.1016/j.sandf.2019.06.009
29.
Liang
,
Y.
,
Zeng
C.
,
Wang
J.-J.
,
Liu
M.-W.
,
Jim Yeh
T.-C.
, and
Zha
Y.-Y.
.
2017
. “
Constant Gradient Erosion Apparatus for Appraisal of Piping Behavior in Upward Seepage Flow
.”
Geotechnical Testing Journal
40
, no. 
4
(July):
630
642
. https://doi.org/10.1520/GTJ20150282
30.
Luo
,
Y. L.
,
Jin
X.
,
Li
X.
,
Zhan
M. L.
, and
Sheng
J. C.
.
2013
. “
A New Apparatus for Evaluation of Contact Erosion at the Soil-Structure Interface
.”
Geotechnical Testing Journal
36
, no. 
2
(March):
256
263
. https://doi.org/10.1520/GTJ20120094
31.
Luo
,
Y.-L.
,
Zhang
X.-J.
,
Zhang
H.-B.
,
Sheng
J.-C.
,
Zhan
M.-L.
,
Wang
H.-M.
, and
He
S.-Y.
.
2022
. “
Review of Suffusion in Deep Alluvium Foundation
” (in Chinese).
Rock and Soil Mechanics
2022
, no. 
11
:
3094
3106
. https://doi.org/10.16285/j.rsm.2021.2175
32.
Ma
,
D.
,
Li
Q.
,
Cai
K.-C.
,
Zhang
J.-X.
,
Li
Z.-H.
,
Hou
W.-T.
,
Sun
Q.
,
Li
M.
, and
Du
F.
.
2023
. “
Understanding Water Inrush Hazard of Weak Geological Structure in Deep Mine Engineering: A Seepage-Induced Erosion Model Considering Tortuosity
.”
Journal of Central South University
30
, no. 
2
(February):
517
529
. https://doi.org/10.1007/s11771-023-5261-4
33.
Mao
,
C.-X.
2005
. “
Study on Piping and Filters: Part I of Piping
” (in Chinese).
Yantu Lixue
26
, no. 
2
(February):
209
215
. https://doi.org/10.16285/j.rsm.2005.02.008
34.
Marot
,
D.
,
Bendahmane
F.
,
Rosquoet
F.
, and
Alexis
A.
.
2009
. “
Internal Flow Effects on Isotropic Confined Sand-Clay Mixtures
.”
Soil and Sediment Contamination: An International Journal
18
, no. 
3
:
294
306
. https://doi.org/10.1080/15320380902799524
35.
Marot
,
D.
,
Rochim
A.
,
Nguyen
H.-H.
,
Bendahmane
F.
, and
Sibille
L.
.
2016
. “
Assessing the Susceptibility of Gap-Graded Soils to Internal Erosion: Proposition of a New Experimental Methodology
.”
Natural Hazards
83
, no. 
1
(August):
365
388
. https://doi.org/10.1007/s11069-016-2319-8
36.
Moffat
,
R. A.
and
Fannin
R. J.
.
2006
. “
A Large Permeameter for Study of Internal Stability in Cohesionless Soils
.”
Geotechnical Testing Journal
29
, no. 
4
(July):
273
279
. https://doi.org/10.1520/GTJ100021
37.
Moffat
,
R.
,
Fannin
R. J.
, and
Garner
S. J.
.
2011
. “
Spatial and Temporal Progression of Internal Erosion in Cohesionless Soil
.”
Canadian Geotechnical Journal
48
, no. 
3
(March):
399
412
. https://doi.org/10.1139/T10-071
38.
Oda
,
M.
,
Koishikawa
I.
, and
Higuchi
T.
.
1978
. “
Experimental Study of Anisotropic Shear Strength of Sand by Plane Strain Test
.”
Soils and Foundations
18
, no. 
1
(March):
25
38
. https://doi.org/10.3208/sandf1972.18.25
39.
Pachideh
,
V.
and
Mir Mohammad Hosseini
S. M.
.
2019
. “
A New Physical Model for Studying Flow Direction and Other Influencing Parameters on the Internal Erosion of Soils
.”
Geotechnical Testing Journal
42
, no. 
6
(November/December):
1431
1456
. https://doi.org/10.1520/GTJ20170301
40.
Richards
,
K. S.
and
Reddy
K. R.
.
2007
. “
Critical Appraisal of Piping Phenomena in Earth Dams
.”
Bulletin of Engineering Geology and the Environment
66
, no. 
4
(November):
381
402
. https://doi.org/10.1007/s10064-007-0095-0
41.
Richards
,
K. S.
and
Reddy
K. R.
.
2010
. “
True Triaxial Piping Test Apparatus for Evaluation of Piping Potential in Earth Structures
.”
Geotechnical Testing Journal
33
, no. 
1
:
83
95
. https://doi.org/10.1520/GTJ102246
42.
Salehi Sadaghiani
,
M. R.
and
Witt
K. J.
.
2011
. “
Experimental Identification of Mobile Particles in Suffusible Non Cohesive Soils
.”
European Journal of Environmental and Civil Engineering
15
, no. 
8
:
1155
1165
. https://doi.org/10.1080/19648189.2011.9714846
43.
Shafiee
,
A.
2008
. “
Permeability of Compacted Granule-Clay Mixtures
.”
Engineering Geology
97
, nos. 
3–4
(April):
199
208
. https://doi.org/10.1016/j.enggeo.2008.01.002
44.
Skempton
,
A. W.
and
Brogan
J. M.
.
1994
. “
Experiments on Piping in Sandy Gravels
.”
Géotechnique
44
, no. 
3
(September):
449
460
. https://doi.org/10.1680/geot.1994.44.3.449
45.
Tomlinson
,
S. S.
and
Vaid
Y. P.
.
2000
. “
Seepage Forces and Confining Pressure Effects on Piping Erosion
.”
Canadian Geotechnical Journal
37
, no. 
1
(February):
1
13
. https://doi.org/10.1139/t99-116
46.
Wan
,
C. F.
and
Fell
R.
.
2008
. “
Assessing the Potential of Internal Instability and Suffusion in Embankment Dams and Their Foundations
.”
Journal of Geotechnical and Geoenvironmental Engineering
134
, no. 
3
(March):
401
407
. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401)
47.
Wang
,
J.-J.
and
Qiu
Z.-F.
.
2017
. “
Anisotropic Hydraulic Conductivity and Critical Hydraulic Gradient of a Crushed Sandstone-Mudstone Particle Mixture
.”
Marine Georesources & Geotechnology
35
, no. 
1
:
89
97
. https://doi.org/10.1080/1064119X.2015.1103825
48.
Yang
,
Z. X.
,
Li
X. S.
, and
Yang
J.
.
2008
. “
Quantifying and Modelling Fabric Anisotropy of Granular Soils
.”
Géotechnique
58
, no. 
4
(April):
237
248
. https://doi.org/10.1680/geot.2008.58.4.237
49.
Zhang
,
L. L.
,
Deng
G.
,
Chen
R.
, and
Luo
Z. Y.
.
2023
a. “
Confining Stress Effects on Global and Local Responses of Internal Erosion in Gap-Graded Cohesionless Soils
.”
Bulletin of Engineering Geology and the Environment
82
, no. 
8
(August): 326. https://doi.org/10.1007/s10064-023-03339-5
50.
Zhang
,
L. L.
,
Deng
G.
,
Chen
R.
,
Zhang
Y. Q.
, and
Luo
Z. Y.
.
2023
b. “
Experimental Investigation on Evolution Process of Suffusion in Gap-Graded Cohesionless Soil
” (in Chinese).
Yantu Gongcheng Xuebao
45
, no. 
7
(October):
1412
1420
. https://doi.org/10.11779/CJGE20220468
51.
Zhong
,
C.
,
Le
V. T.
,
Bendahmane
F.
,
Marot
D.
, and
Yin
Z.-Y.
.
2018
. “
Investigation of Spatial Scale Effects on Suffusion Susceptibility
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
9
(September): 04018067. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001935
52.
Zhou
,
C.
and
Chen
R.
.
2021
. “
Modelling the Water Retention Behaviour of Anisotropic Soils
.”
Journal of Hydrology
599
(August): 126361. https://doi.org/10.1016/j.jhydrol.2021.126361
53.
Zhou
,
Z. Q.
,
Ranjith
P. G.
, and
Li
S. C.
.
2018
. “
An Experimental Testing Apparatus for Study of Suffusion of Granular Soils in Geological Structures
.”
Tunnelling and Underground Space Technology
78
(August):
222
230
. https://doi.org/10.1016/j.tust.2018.05.003
54.
Zhou
,
C.
,
Yin
J.-H.
,
Zhu
J.-G.
, and
Cheng
C.-M.
.
2005
. “
Elastic Anisotropic Viscoplastic Modeling of the Strain-Rate-Dependent Stress-Strain Behavior of K0-Consolidated Natural Marine Clays in Triaxial Shear Tests
.”
International Journal of Geomechanics
5
, no. 
3
(September):
218
232
. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:3(218)
55.
Zou
,
Y.-H.
,
Chen
Q.
, and
He
C.-R.
.
2013
. “
A New Large-Scale Plane-Strain Permeameter for Gravelly Clay Soil under Stresses
.”
KSCE Journal of Civil Engineering
17
, no. 
4
(May):
681
690
. https://doi.org/10.1007/s12205-013-0217-0
This content is only available via PDF.
You do not currently have access to this content.