Abstract

A novel shear test apparatus has been designed and built to test saturated jointed rock specimens under normal and shear loading, capable of housing seismic transducers to monitor simultaneously the mechanical and geophysical response of the rock joints during shear. The system comprises a sealed pressure chamber and a biaxial compression frame. The internal dimensions of the chamber are 177.8 mm × 228.6 mm × 381.0 mm to accommodate a rock specimen with dimensions 152.4 mm × 127.0 mm × 50.8 mm. The chamber is made of aluminum to reduce its weight and is designed to sustain a maximum chamber pressure of 10 MPa, which is considered sufficient to be able to saturate a wide number of rocks. Structural calculations of the chamber are performed with the finite element method (FEM) software, ABAQUS, with the criterion of a maximum deflection of 1 mm at maximum chamber pressure, which is small enough to prevent the loss of seal between the loading shafts and the chamber. The rocks used in the study are Indiana limestone and Sierra White granite. B-value tests conducted on cylindrical specimens of the rocks placed inside the chamber show that the back pressures required to achieve saturation are 3.5 MPa for Indiana limestone and 5.0 MPa for Sierra White granite. The chamber performance has been evaluated by comparing the changes of volume of the chamber at different pressures, measured in the laboratory, with those predicted with ABAQUS. The successful completion of a number of repeatable direct shear tests, on tensile-induced rock joints in dry and saturated conditions specimens, has further established the correctness of the chamber design and its operation.

References

1.
Adachi
,
K.
and
Mesri
G.
.
1973
.
Influence of Pore Water Pressure on the Engineering Properties of Rock, Final Report to ARPA from the University of Illinois at Urbana-Champaign, Department of Civil Engineering
.
Champaign, IL
:
University of Illinois Urbana-Champaign
.
2.
ASTM International.
2023
.
Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens with Flat Loading Platens
. ASTM D3967-23(2023). West Conshohocken, PA:
ASTM International
, approved May 15,
2023
. https://doi.org/10.1520/D3967-16
3.
ASTM International.
2020
.
Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils
. ASTM D4767-11(2020). West Conshohocken, PA:
ASTM International
, approved April 1,
2020
. https://doi.org/10.1520/D4767-11R20
4.
Ahmadinejad
,
A.
and
Kivi
I. R.
.
2021
. “
An Experimental Investigation on the Poroelastic Response of a Water-Saturated Limestone to Hydrostatic Compression
.”
Bulletin of Engineering Geology and the Environment
80
, no. 
1
(February):
3817
3832
. https://doi.org/10.1007/s00603-009-0041-5
5.
Barla
,
G.
,
Barla
M.
, and
Martinotti
M. E.
.
2010
. “
Development of a New Direct Shear Testing Apparatus
.”
Rock Mechanics and Rock Engineering
43
, no. 
1
(February):
117
122
. https://doi.org/10.1007/s00603-009-0041-5
6.
Biot
,
M. A.
1941
. “
General Theory of Three-Dimensional Consolidation
.”
Journal of Applied Physics
12
, no. 
2
(February):
155
164
. https://doi.org/10.1063/1.1712886
7.
Biot
,
M. A.
1956
. “
Theory of Deformation of a Porous Viscoelastic Anisotropic Solid
.”
Journal of Applied Physics
27
, no. 
5
(May):
459
467
. https://doi.org/10.1063/1.1722402
8.
Chiu
,
H. K.
,
Johnston
I. W.
, and
Donald
I. B.
.
1983
. “
Appropriate Techniques for Triaxial Testing of Saturated Soft Rock
.”
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
20
, no. 
3
(June):
107
120
. https://doi.org/10.1016/0148-9062(83)91301-3
9.
Detournay
,
E.
and
Cheng
A. H. D.
.
1993
. “
Fundamentals of Poroelasticity
.” In
Analysis and Design Methods
, edited by
Fairhurst
C.
,
113
171
. Amsterdam, the Netherlands:
Elsevier
. https://doi.org/10.1016/B978-0-08-040615-2.50011-3
10.
Dou
,
Z.
,
Gao
T.
,
Zhao
Z.
,
Li
J.
,
Yang
Q.
, and
Yi
S.
.
2021
. “
Effect of Immersion Duration on Shear Behavior of Granite Fractures
.”
Rock Mechanics and Rock Engineering
54
, no. 
9
(September):
4809
4823
. https://doi.org/10.1007/s00603-021-02534-8
11.
Esaki
,
T.
,
Du
S.
,
Mitani
Y.
,
Ikusada
K.
, and
Jing
L.
.
1999
. “
Development of a Shear-Flow Test Apparatus and Determination of Coupled Properties for a Single Rock Joint
.”
International Journal of Rock Mechanics and Mining Sciences
36
, no. 
5
(July):
641
650
. https://doi.org/10.1016/S0148-9062(99)00044-3
12.
Favero
,
V.
,
Ferrari
A.
, and
Laloui
L.
.
2018
. “
Anisotropic Behaviour of Opalinus Clay through Consolidated and Drained Triaxial Testing in Saturated Conditions
.”
Rock Mechanics and Rock Engineering
51
, no. 
5
(May):
1305
1319
. https://doi.org/10.1007/s00603-017-1398-5
13.
Giger
,
S. B.
,
Clennell
M. B.
,
Harbers
C.
,
Clark
P.
,
Ricchetti
M.
,
Ter Heege
J. H.
,
Wassing
B. B. T.
, and
Orlic
B.
.
2011
. “
Design, Operation and Validation of a New Fluid-Sealed Direct Shear Apparatus Capable of Monitoring Fault-Related Fluid Flow to Large Displacements
.”
International Journal of Rock Mechanics and Mining Sciences
48
, no. 
7
(October):
1160
1172
. https://doi.org/10.1016/j.ijrmms.2011.09.005
14.
Goodman
,
R. E.
and
Ohnishi
Y.
.
1973
. “
Undrained Shear Testing of Jointed Rock
.”
Rock Mechanics
5
, no. 
3
(September):
129
149
. https://doi.org/10.1007/BF01238044
15.
Gutierrez
,
M.
,
Øino
L. E.
, and
Høeg
K.
.
2000
. “
The Effect of Fluid Content on the Mechanical Behaviour of Fractures in Chalk
.”
Rock Mechanics and Rock Engineering
33
, no. 
2
(May):
93
117
. https://doi.org/10.1007/s006030050037
16.
Han
,
K.
,
Pyrak-Nolte
L. J.
, and
Bobet
A.
.
2021
. “
Experimental Investigation of Rock Saturation Determination
.” In
Proceedings of 55th US Rock Mechanics/Geomechanics Symposium
,
2531
2537
. Alexandria, VA:
American Rock Mechanics Association
.
17.
Han
,
K.
,
Pyrak-Nolte
L. J.
, and
Bobet
A.
.
2022
. “
Geophysical Response of Saturated Rock Joints during Shear
.” In
Proceedings of 56th US Rock Mechanics/Geomechanics Symposium
,
499
506
. Alexandria, VA:
American Rock Mechanics Association
.
18.
Hans
,
J.
and
Boulon
M.
.
2003
. “
A New Device for Investigating the Hydromechanical Properties of Rock Joints
.”
International Journal for Numerical and Analytical Methods in Geomechanics
27
, no. 
6
(May):
513
548
. https://doi.org/10.1002/nag.285
19.
Hedayat
,
A.
Mechanical and Geophysical Characterization of Damage in Rocks
.” PhD diss.,
Purdue University
,
2013
.
20.
Hedayat
,
A.
,
Pyrak-Nolte
L. J.
, and
Bobet
A.
.
2014
. “
Multi-modal Monitoring of Slip along Frictional Discontinuities
.”
Rock Mechanics and Rock Engineering
47
, no. 
5
(September):
1575
1587
. https://doi.org/10.1007/s00603-014-0588-7
21.
Hossain
,
D.
1995
. “
Leakage Control in Long-Duration Testing of Triaxial Specimens
.”
Journal of Geotechnical Engineering
121
, no. 
11
(November):
810
813
. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:11(810)
22.
Hu
,
L.
,
Ghassemi
A.
,
Pritchett
J.
, and
Garg
S.
.
2020
. “
Characterization of Laboratory-Scale Hydraulic Fracturing for EGS
.”
Geothermics
83
: 101706. https://doi.org/10.1016/j.geothermics.2019.07.004
23.
Indraratna
,
B.
,
Premadasa
W.
, and
Brown
E. T.
.
2013
. “
Shear Behaviour of Rock Joints with Unsaturated Infill
.”
Géotechnique
63
, no. 
15
(December):
1356
1360
. https://doi.org/10.1680/geot.12.P.065
24.
Ingraham
,
M. D.
,
Dewers
T. A.
,
Williams
M.
,
Cheung
C. S. N.
, and
Haimson
B. C.
.
2017
. “
Bifurcation Theory Applied to Granite under General States of Stress
.” In
Proceedings of 51st US Rock Mechanics/Geomechanics Symposium
,
226
231
. Alexandria, VA:
American Rock Mechanics Association
.
25.
Jaeger
,
J. C.
,
Cook
N. G. W.
, and
Zimmerman
R.
.
2009
.
Fundamentals of Rock Mechanics
.
Hoboken, NJ
:
John Wiley & Sons
.
26.
Kim
,
K.
and
Makhnenko
R. Y.
.
2020
. “
Coupling Between Poromechanical Behavior and Fluid Flow in Tight Rock
.”
Transport in Porous Media
135
, no. 
2
(November):
487
512
. https://doi.org/10.1007/s00603-022-03032-1
27.
Li
,
B.
,
Ye
X.
,
Dou
Z.
,
Zhao
Z.
,
Li
Y.
, and
Yang
Q.
.
2020
. “
Shear Strength of Rock Fractures under Dry, Surface Wet and Saturated Conditions
.”
Rock Mechanics and Rock Engineering
53
, no. 
6
(June):
2605
2622
. https://doi.org/10.1007/s00603-020-02061-y
28.
Liu
,
Z.
,
Wei
H.
,
Peng
L.
,
Wei
C.
, and
Ning
F.
.
2017
. “
An Easy and Efficient Way to Evaluate Mechanical Properties of Gas Hydrate-Bearing Sediments: The Direct Shear Test
.”
Journal of Petroleum Science Engineering
149
:
56
64
. https://doi.org/10.1016/j.petrol.2016.09.040
29.
Lowe
,
J.
and
Johnson
T. C.
.
1960
. “
Use of Back Pressure to Increase Degree of Saturation of Triaxial Test Specimen
.” In
Proceedings of ASCE Research Conference on Shear Strength of Cohesive Soils
.
819
836
. New York:
American Society of Civil Engineers.
30.
Makhnenko
,
R. Y.
and
Podladchikov
Y. Y.
.
2018
. “
Experimental Poroviscoelasticity of Common Sedimentary Rocks
.”
Journal of Geophysical Research: Solid Earth
123
, no. 
9
:
7586
7603
.
31.
Makhnenko
,
R. Y.
and
Labuz
J. F.
.
2016
. “
Elastic and Inelastic Deformation of Fluid-Saturated Rock
.”
Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences
374
, no. 
2078
(October): 20150422. https://doi.org/10.1098/rsta.2015.0422
32.
Mesri
,
G.
,
Adachi
K.
, and
Ullrich
C. R.
.
1976
. “
Pore-Pressure Response in Rock to Undrained Change in All-Round Stress
.”
Géotechnique
26
, no. 
2
(June):
317
330
. https://doi.org/10.1680/geot.1976.26.2.317
33.
Modiriasari
,
A.
,
Bobet
A.
, and
Pyrak-Nolte
L. J.
.
2017
. “
Active Seismic Monitoring of Crack Initiation, Propagation, and Coalescence in Rock
.”
Rock Mechanics and Rock Engineering
50
, no. 
9
(September):
2311
2325
. https://doi.org/10.1007/s00603-017-1235-x
34.
Nishiyama
,
S.
,
Ohnishi
Y.
,
Ito
H.
, and
Yano
T.
.
2014
. “
Mechanical and Hydraulic Behavior of a Rock Fracture under Shear Deformation
.”
Earth, Planets, and Space
66
: 108. https://doi.org/10.1186/1880-5981-66-108
35.
Wissa
,
A. E. Z.
1969
. “
Pore Pressure Measurements in Saturated Stiff Soils
.”
Journal of the Soil Mechanics and Foundations Division
95
, no. 
4
(July):
1063
1073
. https://doi.org/10.1061/JSFEAQ.0001304
36.
Ye
,
Z.
,
Janis
M.
, and
Ghassemi
A.
.
2017
. “
Injection-Driven Shear Slip and the Coupled Permeability Evolution of Granite Fractures for EGS Stimulation
.” In
Proceedings of 51st US Rock Mechanics/Geomechanics Symposium
,
743
757
. Alexandria, VA:
American Rock Mechanics Association
.
37.
Zhang
,
Q.
,
Li
X.
,
Bai
B.
,
Pei
L.
,
Shi
L.
, and
Wang
Y.
.
2019
. “
Development of a Direct-Shear Apparatus Coupling with High Pore Pressure and Elevated Temperatures
.”
Rock Mechanics and Rock Engineering
52
, no. 
9
(September):
3475
3484
. https://doi.org/10.1007/s00603-019-1735-y
This content is only available via PDF.
You do not currently have access to this content.