The individual and combined effects of buoyancy, crystal rotation, and crucible rotation are reported in this paper for axisymmetrically averaged melt convection in a large Czochralski crystal growth system for silicon. These body force effects are characterized by the respective parameters of Grashof number, Gr, rotational Reynolds number, Rer, and the Marangoni number, Ma. The range investigated consists of 108 ≤ Gr ≤ 1010, 103 ≤ Re ≤ 3 × 104, and 103 ≤ Ma ≤ 104, which is appropriate for the real Czochralski system. The studies are based on a multizone, adaptive, finite volume calculation. Validations of the numerical procedures are presented, including a grid convergence study. The effects of buoyancy and rotation on melt convection are discussed in detail. When the crystal and crucible both rotate at the same speed, but in opposite directions, without buoyancy, the effect of the crucible rotation is stronger. The rotation induces turbulence, contrary to what the literature suggests. For the combined effects, the intensity of turbulence and the average Nusselt number at the crucible wall are largest when buoyancy is slightly dominant over rotation. High rotation rates generate temperature oscillations in the presence of high Grashof numbers. Because of the consequence of oscillation for crystal quality, a dynamic adjustment of the rotation rate might be necessary in order to obtain desirable growth conditions.

1.
Abe
K.
, and
Kondoh
T.
,
1995
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations
,”
Int. J. Heat Mass Transfer
, Vol.
38
, pp.
1467
1481
.
2.
Anselmo
A.
,
Prasad
V.
,
Koziol
J.
, and
Gupta
K. P.
,
1993
, “
Oscillatory Convection in Low Aspect Ratio Czochralski Melts
,”
J. Crystal Growth
, Vol.
134
, pp.
116
139
.
3.
Cheesewright, R., King, K. J., and Ziai, S., 1986, “Experimental Data for the Validation of Computer Codes for the Prediction of Two-Dimensional Buoyant Cavity Flows,” Significant Questions in Buoyancy Affected Enclosure or Cavity Flows, ASME, New York, pp. 75–81.
4.
de Vahl Davis
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Heat Mass Transfer
, Vol.
3
, pp.
249
264
.
5.
Dupret, F., Van den Bogaet, N., Assaker, R., and Regnier, V., 1998, “Mathematical Modeling of the Growth of Large Diameter Czochralski Silicon Crystals Considering Melt Dynamics,” Proc. 8th Int. Symp, on Silicon Materials Sci. and Tech., H. R. Huff, U. Go¨sele, and H. Tsuya, eds., Electronic Division of the Electrochemical Society, Proc. Vol. 98–1, pp. 396–410.
6.
Elwell
D.
, and
Andersen
E.
,
1989
, “
Temperature Oscillation in Silicon Melts
,”
J, Crystal Growth
, Vol.
98
, pp.
667
678
.
7.
Gatski
T. B.
, and
Speziale
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
, Vol.
254
, pp.
59
78
.
8.
Germano
M.
,
Piomelli
U.
,
Moin
P.
, and
Cabot
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
, Vol.
3
, pp.
1760
1765
.
9.
Greenspan, H. P., 1969, The Theory of Rotating Flows, Cambridge University Press, London.
10.
Hurle
D. T. J.
,
1983
, “
Convective Transport in Melt Growth Systems
,”
Journal Crystal Growth
, Vol.
65
, pp.
124
132
.
11.
Iliev
K.
,
Berkowski
M.
, and
Piekarczyk
W.
,
1991
, “
Conditions of Existence and Character of the Temperature Fluctuations During Czochralski Growth of Oxide Single Crystals
,”
J. Crystal Growth
, Vol.
108
, pp.
219
224
.
12.
Jones
A. D. W.
,
1988
, “
Scaling Analysis of the Flow of Low Prandtl Number Czochralski Melt
,”
J. Crystal Growth
, Vol.
88
, pp.
465
476
.
13.
Jones
W. P.
, and
Launder
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
, Vol.
15
, pp.
301
314
.
14.
Kakimoto
K.
,
Eguchi
M.
,
Watanabe
H.
, and
Hibiya
T.
,
1988
, “
Natural and Forced Convection of Molten Silicon During Czochralski Single Crystal Growth
,”
J. Crystal Growth
, Vol.
94
, pp.
412
420
.
15.
Kim
K. M.
, and
Langlois
W. E.
,
1986
, “
Computer Simulation of Boron Transport in Magnetic Czochralski Growth of Silicon
,”
J. Electrochem. Soc
, Vol.
133
, No.
12
, pp.
2586
2590
.
16.
Kinney
T. A.
, and
Brown
R. A.
,
1993
, “
Application of Turbulence Modeling to the Integrated Hydrodynamic Thermal-Capillary Model of Czochralski Crystal Growth of Silicon
,”
J. Crystal Growth
, Vol.
132
, pp.
551
574
.
17.
Kobayashi
N.
,
1995
, “
Steady State Flow in a Czochralski Crucible
,”
J. Crystal Growth
, Vol.
147
, pp.
382
389
.
18.
Kobayashi
S.
,
Miyahara
S.
,
Fujiwara
T.
,
Kubo
T.
, and
Fujiwara
H.
,
1991
, “
Turbulent Heat Transfer Through the Melt in Silicon Czochralski Growth
,”
J. Crystal Growth
, Vol.
109
, pp.
149
154
.
19.
Kuroda
E.
,
Kozuka
H.
, and
Takano
Y.
,
1984
, “
The Effect of Temperature Oscillations at the Growth Interface on Crystal Perfection
,”
J. Crystal Growth
, Vol.
68
, pp.
613
623
.
20.
Markatos
N. C.
, and
Pericleous
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
, Vol.
27
, No.
5
, pp.
755
772
.
21.
Ladeinde
F.
, and
Torrance
K. E.
,
1991
, “
Convection in Rotating, Horizontal Cylinders With Radial and Normal Gravity Forces
,”
J. of Fluid Mech.
, Vol.
228
, pp.
361
385
.
22.
Mihelcˇicˇ
M.
, and
Wingerath
K.
,
1989
, “
Instability of the Buoyancy Driven Convection in Si Melts During Czochralski Crystal Growth
,”
J. Crystal Growth
, Vol.
97
, pp.
42
49
.
23.
Mu¨ller, G., and Ostrogorsky, A., 1994, “Convection in Melt Growth,” Handbook of Crystal Growth, Vol. 2b, D. T. J. Hurle, ed., North-Holland, New York.
24.
Noble, E., 1993, “Comparison of Turbulence Models for Side-Heated Cavities,” Turbulent Natural Convection in Enclosures: A Computational and Experimental Benchmark Study, R. A. W. M. Henkes and C. J. Hoogendoorn eds., Proc. Eurotherm Seminar No. 22, EETI, Paris, pp. 214–233.
25.
Ono
N.
,
Kida
M.
,
Arai
Y.
, and
Sahira
K.
,
1993
, “
Thermal Analysis of the Double-Crucible Method in Continuous Silicon Czochralski Processing
,”
J. Electrochem. Soc
, Vol.
140
, No.
7
, pp.
2106
2111
.
26.
Prasad
V.
,
Zhang
H.
, and
Anselmo
A.
,
1997
, “
Transport Phenomena in Crystal Growth Process
,”
Adv. Heat Transfer
, Vol.
30
, Academic Press, New York, pp.
313
435
.
27.
Ristorcelli
J. R.
, and
Lumley
J. L.
,
1992
, “
Instabilities, Transition, and Turbulence in the Czochralski Crystal Melt
,”
J. Crystal Growth
, Vol.
116
, pp.
447
460
.
28.
Ristorcelli
J. R.
, and
Lumley
J. L.
,
1993
, “
A Second-Order Turbulence Simulation of the Czochralski Crystal Growth Melt: The Buoyancy Driven Flow
,”
J. Crystal Growth
, Vol.
129
, pp.
249
265
.
29.
Togawa
S.
,
Huang
X.
,
Izunome
K.
,
Terashima
K.
,
Kimura
S.
,
1995
, “
Oxygen Transport Analysis in Czochralski Silicon Melt by Considering the Oxygen Evaporation From the Melt Surface
,”
J. Crystal Growth
, Vol.
148
, pp.
70
78
.
30.
Yakhot
V.
,
Orszag
S. A.
,
Thangam
S.
,
Gatski
T. B.
, and
Speziale
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids
, Vol.
A4
, No.
7
, pp.
1510
1520
.
31.
Zandbergen
P. J.
, and
Dijkstra
D.
,
1987
, “
Von Karman Swirling Flows
,”
Annu. Rev. of Fluid Meek
, Vol.
19
, pp.
465
491
.
32.
Zhang
H.
, and
Prasad
V.
,
1995
, “
A Multizone Adaptive Process Model for Low and High Pressure Crystal Growth
,”
J. Crystal Growth
, Vol.
155
, pp.
47
65
.
33.
Zhang, H., Prasad, V., and Moallemi, M. K., 1996a, “A Numerical Algorithm Using Multi-Zone Grid Generation for Multiphase Transport Processes With Moving and Free Boundaries,” Numerical Heat Transfer, Part B, Vol. 29, in press,
34.
Zhang
H.
,
Prasad
V.
, and
Bliss
D.
,
1996
b, “
Transport Phenomena in High Pressure Crystal Growth Systems for III-V Compounds
,”
J. Crystal Growth
, Vol.
169
, pp.
250
260
.
35.
Zhang
H.
, and
Prasad
V.
,
1997
, “
An Advanced Numerical Scheme for Materials Process Modeling
,”
Computer Modeling and Simulation in Engr.
, Vol.
3
, pp.
230
237
.
36.
Zhang, T., Ladeinde, F., Zhang, H., and Prasad, V., 1996, “A Comparison of Turbulence Models for Natural Convection in Enclosures: Applications to Crystal Growth Processes,” Proc. 31st National Heat Transfer Conf, HTD-Vol. 323, ASME, New York, pp. 17–26.
This content is only available via PDF.
You do not currently have access to this content.