A two-dimensional inverse analysis utilizes a different perspective to simultaneously estimate the center and surface thermal behavior of a heated cylinder normal to a turbulent air stream. A finite-difference method is used to discretize the governing equations and then a linear inverse model is constructed to identify the unknown boundary conditions. The present approach is to rearrange the matrix forms of the governing differential equations and estimate the unknown boundary conditions of the heated cylinder. Then, the linear least-squares-error method is adopted to find the solutions. The results show that only a few measuring points inside the cylinder are needed to estimate the unknown quantities of the thermal boundary behavior, even when measurement errors are considered. In contrast to the traditional approach, the advantages of this method are that no prior information is needed on the functional form of the unknown quantities, no initial guesses are required, no iterations in the calculating process are necessary, and the inverse problem can be solved in a linear domain. Furthermore, the existence and uniqueness of the solutions can easily be identified.

1.
Tseng
,
A. A.
,
Lin
,
F. H.
,
Gunderia
,
A. S.
, and
Ni
,
D. S.
,
1989
, “
Roll Cooling and Its Relationship to Roll Life
,”
Metall. Trans. A
,
20
(
11
), pp.
2305
2320
.
2.
Stolz
, Jr.,
G.
,
1960
, “
Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes
,”
ASME J. Heat Transfer
,
82
, pp.
20
26
.
3.
Bass
,
B. R.
,
1980
, “
Application of the Finite Element Method to the Nonlinear Inverse Heat Conduction Problem Using Beck’s Second Method
,”
ASME J. Eng. Ind.
,
102
(
2
), pp.
168
176
.
4.
Beck
,
J. V.
,
Litkouhi
,
B.
, and
St. Clair
,
C. R.
,
1982
, “
Efficient Sequential Solution of Nonlinear Inverse Heat Conduction Problem
,”
Numer. Heat Transfer
,
5
(
3
), pp.
275
286
.
5.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
,
1991
, “
General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transf.
,
34
(
11
), pp.
2911
2919
.
6.
Hsu
,
T. R.
,
Sun
,
N. S.
,
Chen
,
G. G.
, and
Gong
,
Z. L.
,
1992
, “
Finite Element Formulation for Two-Dimensional Inverse Heat Conduction Analysis
,”
ASME J. Heat Transfer
,
114
, pp.
553
557
.
7.
Yang
,
Y. T.
,
Hsu
,
P. T.
, and
Chen
,
C. K.
,
1997
, “
A Three-Dimensional Inverse Heat Conduction Problem Approach for Estimating the Heat Flux and Surface Temperature of a Hollow Cylinder
,”
J. Appl. Phys., J. Phys. D
,
30
, pp.
1326
1333
.
8.
Beck, J. V., Blackwell, B., and St. Clair, C. R., 1985, Inverse Heat Conduction—Ill-Posed Problem, Wiley, New York.
9.
Morozov, V. A., and Stressin, M., 1993, Regularization Method for Ill-Posed Problems, CRC Press, Boca Raton, FL.
10.
Murio, D. A., 1993, The Mollification Method and the Numerical Solution of Ill-Posed Problems, Wiley, New York.
11.
Tikhnov, A. N., and Arsenin, V. Y., 1997, Solution of Ill-Posed Problems, Winston and Sons, Washington, D.C.
12.
Lin
,
J. H.
,
Chen
,
C. K.
, and
Yang
,
Y. T.
,
2001
, “
Inverse Method for Estimating Thermal Conductivity in One-Dimensional Heat Conduction Problems
,”
AIAA Journal of Thermophysics and Heat Transfer
,
15
(
1
), pp.
34
41
.
13.
Yang
,
C. Y.
, and
Chen
,
C. K.
,
1996
, “
The Boundary Estimation in Two-Dimensional Inverse Heat Conduction Problems
,”
J. Appl. Phys., J. Phys. D
,
29
(
2
), pp.
333
339
.
14.
Giedt
,
W. H.
,
1949
, “
Investigation of Variation of Point Unit-Heat-Transfer Coefficient Around a Cylinder Normal to an Air Stream
,”
Trans. ASME
,
71
, pp.
375
381
.
15.
Kalman, R. E., 1960, “A New Approach to Linear Filtering and Prediction Problems,” Trans. ASME, 82D, pp. 35–45.
16.
Pfahl
, Jr.,
R. C.
,
1966
, “
Nonlinear Least-Squares: A Method for Simultaneous Thermal Property Determination in Ablating Polymeric Materials
,”
J. Appl. Polym. Sci.
,
10
(
8
), pp.
1111
1119
.
17.
Sorenson, H. W., 1980, Parameter Estimation: Principles and Problems, Marcel Dekker, New York.
18.
Yang
,
C. Y.
,
1997
, “
Noniterative Solution of Inverse Heat Conduction Problems in One Dimension
,”
Communications in Numerical Methods in Engineering
,
13
(
6
), pp.
419
427
.
19.
KaleidaGraph Reference Guide Version 3.05, 1994, Abelbeck Software, pp. 174.
20.
Friedberg, S. H., Insel, A. J., and Spence L. E., 1992, Linear Algebra, 2nd ed, Prentice Hall, Singapore, pp. 147–167.
21.
IMSL User’s Manual, 1985, Math Library Version 1.0, IMSL Library Edition 10.0, IMSL, Houston, TX.
22.
Silva Neto
,
A. J.
, and
Ozisik
,
M. N.
,
1993
, “
Inverse Problem of Simultaneously Estimating the Timewise Varying Strength of Two-Plane Heat Source
,”
J. Appl. Phys.
,
73
, pp.
2132
2137
.
You do not currently have access to this content.