Abstract
This work addresses unsteady heat conduction in a plane wall subjected to a time-variable incident heat flux. Three different types of flux are studied (sinusoidal, triangular and step waveforms) and constant thermal properties are assumed for simplicity. First, the direct heat conduction problem is solved using the Network Simulation Method (NSM) and the collection of temperatures obtained at given instants is modified by introducing a random error. The resulting temperatures act as the input data for the inverse problem, which is also solved by a sequential approach using the NSM in a simple way. The solution is a continuous piece-wise function obtained step by step by minimizing the classical functional that compares the above input data with those obtained from the solution of the inverse problem. No prior information is used for the functional forms of the unknown heat flux. A piece-wise linear stretches of variable slope and length is used for each of the stretches of the solution. The sensitivity of the functional versus the slope of the line, at each step, is acceptable and the complete piece-wise solution is very close to the exact incident heat flux in all of the mentioned waveforms.