Several recently developed boundary element formulations for time-dependent convective heat diffusion appear to provide very efficient computational tools for transient linear heat flows. More importantly, these new approaches hold much promise for the numerical solution of related nonlinear problems, e.g., Navier–Stokes flows. However, the robustness of these methods has not been examined, particularly for high Peclet number regimes. Here, we focus on these regimes for two-dimensional problems and develop the necessary temporal and spatial integration strategies. The algorithm takes advantage of the nature of the time-dependent convective kernels, and combines analytic integration over the singular portion of the time interval with numerical integration over the remaining nonsingular portion. Furthermore, the character of the kernels lets us define an influence domain and then localize the surface and volume integrations only within this domain. We show that the localization of the convective kernels becomes more prominent as the Peclet number of the flow increases. This leads to increasing sparsity and in most cases improved conditioning of the global matrix. Thus, iterative solvers become the primary choice. We consider two representative example problems of heat propagation, and perform numerical investigations of the accuracy and stability of the proposed higher-order boundary element formulations for Peclet numbers up to 105.

1.
Brooks
,
A.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulation for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
259
.
2.
Peyret
,
R.
, and
Taylor
,
T. D.
, 1983,
Computational Methods for Fluid Flow
,
Springer
, New York.
3.
Gresho
,
P. M.
, and
Sani
,
R. L.
, 1998,
Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow
,
Wiley
, Chichester.
4.
de Sampaio
,
P. A. B.
, and
Coutinho
,
A. L. G. A.
, 2001, “
A Natural Derivation of Discontinuity Capturing Operator for Convection-Diffusion Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6291
6308
.
5.
Tanaka
,
Y.
,
Honma
,
T.
, and
Kaji
,
I.
, 1988, “
Boundary Element Solution of a Three-Dimensional Convective Diffusion Equation for Large Peclet Numbers
,” Boundary Element Methods in Applied Mechanics,
M.
Tanaka
and
T. A.
Cruse
, eds.,
Pergamon
, Oxford, pp.
295
304
.
6.
Okamoto
,
N.
, 1988, “
Analysis of Convective Diffusion Problem With First-Order Chemical Reaction by Boundary Element Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
8
, pp.
55
64
.
7.
Enokizono
,
M.
, and
Nagata
,
S.
, 1992, “
Convection-Diffusion Analysis at High Peclet Number by the Boundary Element Method
,”
IEEE Trans. Magn.
0018-9464,
28
, pp.
1653
1654
.
8.
Dargush
,
G. F.
,
Banerjee
,
P. K.
, and
Shi
,
Y.
, 1991, “
Development of an Integrated BEM Approach for Hot Fluid Structure Interaction
,” NASA CR-187236,
NASA Lewis Research Center
, Cleveland, OH.
9.
Grigoriev
,
M. M.
, and
Fafurin
,
A. V.
, 1997, “
A Boundary Element Method for Steady Viscous Flow Using Penalty Function Formulation
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
907
929
.
10.
Qiu
,
Z. H.
,
Wrobel
,
L. C.
, and
Power
,
H.
, 1998, “
Numerical Solution of Convection-Diffusion Problems at High Peclet Number Using Boundary Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
41
, pp.
899
914
.
11.
Ramsak
,
M.
, and
Skerget
,
L.
, 1999, “
Mixed Boundary Elements for Laminar Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
31
, pp.
861
877
.
12.
Dargush
,
G. F.
, and
Grigoriev
,
M. M.
, 2000, “
A Poly-Region Boundary Element Method for Boussinesq Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
1261
1287
.
13.
Shi
,
Y.
, and
Banerjee
,
P. K.
, 1993, “
Boundary Element Methods for Convective Heat Transfer
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
105
, pp.
261
284
.
14.
Grigor’ev
,
M. M.
, 1994, “
A Boundary Element Method for the Solution of Convective Diffusion and Burgers’ Equations
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
4
, pp.
527
552
.
15.
Lim
,
J.
,
Chan
,
C. L.
, and
Chandra
,
A.
, 1994, “
A BEM Analysis for Transient Conduction-Convection Problems
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
4
, pp.
31
45
.
16.
Grigoriev
,
M. M.
, and
Dargush
,
G. F.
, 2003, “
Boundary Element Methods for Transient Convective Diffusion. Part I: General Formulation and 1D Implementation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
4281
4298
.
17.
Grigoriev
,
M. M.
, and
Dargush
,
G. F.
, 2003, “
Boundary Element Methods for Transient Convective Diffusion. Part II: 2D Implementation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
4299
4312
.
18.
Grigoriev
,
M. M.
, and
Dargush
,
G. F.
, 2003, “
Boundary Element Methods for Transient Convective Diffusion. Part III: Numerical Examples
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
4313
4335
.
19.
Grigoriev
,
M. M.
, and
Dargush
,
G. F.
, 2005, “
Efficiency of Boundary Element Methods for Time-Dependent Convective Heat Diffusion at High Peclet Numbers
,”
Commun. Numer. Methods Eng.
1069-8299,
21
, pp.
149
161
.
20.
Grigoriev
,
M. M.
, and
Dargush
,
G. F.
, 2002, “
Higher-Order Boundary Element Methods for Transient Diffusion Problems. Part I: Bounded Flux Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
55
, pp.
1
40
.
21.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
, 2nd Ed.,
Claredon
, Oxford.
22.
Grigoriev
,
M. M.
, and
Dargush
,
G. F.
, 2004, “
Efficiency and Accuracy of Higher-Order Boundary Element Methods for Steady Convective Heat Diffusion
,”
Numer. Heat Transfer, Part A
1040-7782,
45
, pp.
109
133
.
23.
Dargush
,
G. F.
, and
Banerjee
,
P. K.
, 1991, “
A Time-Dependent Incompressible Viscous BEM for Moderate Reynolds Numbers
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
1627
1648
.
24.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C. The Art of Scientific Computing
,
Cambridge University Press
, Cambridge, UK.
25.
∅sterby
,
O.
, and
Zlatev
,
Z.
, 1983, “
Direct Methods for Sparse Matrices
,”
Lecture Notes in Computer Science
,
Springer
, Berlin, Vol.
157
.
You do not currently have access to this content.