Turbulent complex three-dimensional air flow and heat transfer inside a cross-corrugated triangular duct is numerically investigated. Four turbulence models, the standard kε (SKE), the renormalized group kε, the low Reynolds kω (LKW), and the Reynolds stress models (RSM) are selected, with nonequilibrium wall functions approach (if applicable). The periodic mean values of the friction factor and the wall Nusselt numbers in the hydro and thermally developing entrance region are studied, with the determination of the distribution of time-averaged temperature and velocity profiles in the complex topology. The results are compared with the available experimental Nusselt numbers for cross-corrugated membrane modules. Among the various turbulence models, generally speaking, the RSM model gives the best prediction for 2000Re20,000. However, for 2000Re6000, the LKW model agrees the best with experimental data, while for 6000<Re20,000, the SKE predicts the best. Two correlations are proposed to predict the fully developed periodic mean values of Nusselt numbers and friction factors for Reynolds numbers ranging from 2000 to 20,000. The results are that compared to parallel flat plates, the corrugated ducts could enhance heat transfer by 40 to 60%, but with a 2 times more pressure drop penalty. The velocity, temperature, and turbulence fields in the flow passages are investigated to give some insight into the mechanisms for heat transfer enhancement.

1.
Zhang
,
L. Z.
, and
Jiang
,
Y.
, 1999, “
Heat and Mass Transfer in a Membrane-Based Enthalpy Recovery Ventilator
,”
J. Membr. Sci.
0376-7388,
163
, pp.
29
38
.
2.
Kistler
,
K. R.
, and
Cussler
,
E. L.
, 2002, “
Membrane Modules for Building Ventilation
,”
Chem. Eng. Res. Des.
0263-8762,
80
, pp.
53
64
.
3.
Zhang
,
L. Z.
, and
Niu
,
J. L.
, 2002, “
Effectiveness Correlations for Heat and Moisture Transfer Processes in an Enthalpy Exchanger With Membrane Cores
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
922
929
.
4.
Niu
,
J. L.
, and
Zhang
,
L. Z.
, 2001, “
Membrane-Based Enthalpy Exchanger: Material Considerations and Clarification of Moisture Resistance
,”
J. Membr. Sci.
0376-7388,
189
, pp.
179
191
.
5.
Scott
,
K.
,
Mahmood
,
A. J.
,
Jachuck
,
R. J.
, and
Hu
,
B.
, 2000, “
Intensified Membrane Filtration With Corrugated Membranes
,”
J. Membr. Sci.
0376-7388,
173
, pp.
1
16
.
6.
Focke
,
W. W.
, 1985, “
Asymmetrically Corrugated Plate Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
0735-1933,
12
, pp.
67
77
.
7.
Focke
,
W. W.
,
Zachariades
,
J.
, and
Olivier
,
I.
, 1985, “
The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
1469
1479
.
8.
Ciofalo
,
M.
,
Stasiek
,
J.
, and
Collins
,
M. W.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages. II. Numerical Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
165
192
.
9.
Biomerius
,
H.
,
Hoisken
,
C.
, and
Mitra
,
N. K.
, 1999, “
Numerical Investigation of Flow Field and Heat Transfer in Cross-Corrugated Ducts
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
314
321
.
10.
Mehrabian
,
M. A.
, and
Poulter
,
R.
, 2000, “
Hydrodynamics and Thermal Characteristics of Corrugated Channels: Computational Approach
,”
Appl. Math. Model.
0307-904X,
24
, pp.
343
364
.
11.
Scott
,
K.
, and
Lobato
,
J.
, 2003, “
Mass Transport in Cross-Corrugated Membranes and the Influence of TiO2 for Separation Processes
,”
Ind. Eng. Chem. Res.
0888-5885,
42
, pp.
5697
5701
.
12.
Zimmer
,
C.
,
Gschwind
,
P.
,
Gaiser
,
G.
, and
Kottle
,
V.
, 2002, “
Comparison of Heat and Mass Transfer in Different Heat Exchanger Geometries with Corrugated Walls
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
269
273
.
13.
Patel
,
C. V.
,
Rodi
,
W.
, and
Scheuerer
,
G.
, 1984, “
Turbulence Models for Near Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
0001-1452,
23
, pp.
1308
1319
.
14.
Mompean
,
G.
, 1998, “
Numerical Simulation of a Turbulent Flow Near a Right-Angled Corner Using the Speziale Nonlinear Model with RNG k‐ε Equations
,”
Comput. Fluids
0045-7930,
27
, pp.
847
859
.
15.
Li
,
L. J.
,
Lin
,
C. X.
, and
Ebadian
,
M. A.
, 1998, “
Turbulent Mixed Convective Heat Transfer in the Entrance Region of a Curved Pipe with Uniform Wall Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3793
3805
.
16.
Jones
,
R. M.
,
Harvey
,
A. D.
, and
Acharya
,
S.
, 2001, “
Two Equation Turbulence Modeling for Impeller Stirred Tanks
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
640
648
.
17.
Song
,
B.
, and
Amano
,
R. S.
, 2000, “
Application of Nonlinear k‐ω Model to a Turbulent Flow Inside a Sharp U-Bend
,”
Comput. Mech.
0178-7675,
26
, pp.
344
351
.
18.
Moore
,
E. M.
,
Shambaugh
,
R. L.
, and
Papavassiliou
,
D. V.
, 2004, “
Analysis of Isothermal Annular Jets: Comparison of Computational Fluid Dynamics and Experimental Data
,”
J. Appl. Polym. Sci.
0021-8995,
94
, pp.
909
992
.
19.
Rokni
,
M.
, and
Sunden
,
B.
, 2003, “
Calculation of Turbulent Fluid Flow and Heat Transfer in Ducts by a Full Reynolds Stress Model
,”
Int. J. Numer. Methods Fluids
0271-2091,
42
, pp.
147
162
.
20.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Introduction to Heat Transfer
,
Wiley
, NY, Chap. 8, p.
392
.
21.
Tinaut
,
F. V.
,
Melgar
,
A.
, and
Rahman Ali
,
A. A.
, 1992, “
Correlations for Heat Transfer and Flow Friction Characteristics of Compact Plate-Type Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1659
1665
.
22.
Yuan
,
Z. X.
,
Tao
,
W. Q.
, and
Wang
,
Q. W.
, 1998, “
Numerical Prediction for Laminar Forced Convection Heat Transfer in Parallel-Plate Channels With Stream-Wise-Periodic Rod Disturbances
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
1371
1387
.
You do not currently have access to this content.