An experimental investigation was carried out for frost growth in a desiccant-coated regenerative wheel. The test facility was set up following ASHRAE Standard 84-1991R. Temperature, relative humidity, mass flow rate, and pressure drops were measured at each measuring station. Photos of frost within energy wheel flow channels show frost accumulation. The problem of frost growth within the narrow parallel flow passages of a regenerative heat or energy rotary wheel is formulated for a very cold-temperature ventilation application. Frost growth is assumed to grow as a porous media while the wheel is exposed to warm humid airflow on the exhaust side. While the wheel is exposed to cold dry airflow on the supply side, the frost is cooled but no frost grows. This cyclic frost growth and cooling process is continued with each wheel rotation. An analytical/numerical model is developed to simulate these frost properties over the depth of the wheel and as a function of time. Simulation results are used to interpret experimental data for the early stage of frost growth on a typical energy wheel with a cold supply air temperature of 40°C, a warm exhaust temperature of 20 °C and 40% relative humidity. Pressure drop measurements across a wheel taken for constant mass flow conditions revealed some very significant fluctuations of up to 100% of original pressure drop with a period ranging from 2 to 4 min for a wheel speed of 20 rpm. Each fluctuation in pressure drop is interpreted to imply a catastrophic failure of the outer frost layer sequenced over 1–2 min throughout the wheel followed by another frost growth period on top of a slightly thicker frost base.

1.
Hayashi
,
Y.
,
Aoki
,
A.
,
Adachi
,
S.
, and
Hori
,
K.
, 1977, “
Study of Frost Properties Correlating with Frost Formation Types
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
239
245
.
2.
Tao
,
Y-X
,
Besant
,
R. W.
, and
Mao
,
Y.
, 1993, “
Characteristics of Frost Growth on a Flat Plate during the Early Period
,”
ASHRAE Trans.
0001-2505,
99
, pp.
739
745
.
3.
Chen
,
H.
,
Thomas
,
L.
, and
Besant
,
R. W.
, 2000, “
Modeling Frost Characteristics on Heat Exchanger Fins: Part I: Numerical Model and Part II: Model Validation and Limitations
,”
ASHRAE Trans.
0001-2505,
106
, pp.
357
376
.
4.
Simonson
,
C. J.
, and
Besant
,
R. W.
, 1998, “
Heat and Moisture Transfer in Energy Wheels during Sorption, Condensation and Frosting Conditions
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
699
708
.
5.
Lee
,
K. S.
,
Kim
,
W. S.
, and
Lee
,
T. H.
, 1997, “
A one-dimensional model for frost formation on a cold flat surface
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
4359
4365
.
6.
Na
,
B.
, and
Webb
,
R. L.
, 2004a, “
Mass Transfer On and Within a Frost Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
899
911
.
7.
Na
,
B.
, and
Webb
,
R. L.
, 2004b, “
New Model for Frost Growth Rate
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
5
), pp.
925
936
.
8.
Na
,
B.
, and
Webb
,
R. L.
, 2003, “
A Fundamental Understanding of Factors Affecting Frost Nucleation
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3797
3808
.
9.
Dietenberger
,
M. A.
, 1983, “
Generalized Correlation of the Water Frost Thermal Conductivity
,”
Int. J. Heat Mass Transfer
0017-9310,
26
, pp.
607
619
.
10.
Thomas
,
L.
,
Chen
,
H.
, and
Besant
,
R. W.
, 1999, “
Measurement of Frost Characteristics on Heat Exchanger Fins, Part I: Test Facility and Instrumentation
,”
ASHRAE Trans.
0001-2505,
105
, pp.
283
293
.
11.
Chen
,
H.
,
Thomas
,
L.
, and
Besant
,
R. W.
, 1999, “
Measurement of Frost Characteristics on Heat Exchanger Fins, Part II: Data and Analysis
,”
ASHRAE Trans.
0001-2505,
105
, pp.
294
302
.
12.
Holmberg
,
R. B.
, 1977, “
Heat and Mass Transfer in Rotary Heat Exchangers with Non-Hygroscopic Rotor Materials
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
196
202
.
13.
Holmberg
,
R. B.
, 1979, “
Combined Heat and Mass Transfer in Regenerators with Hygroscopic Materials
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
205
210
.
14.
Bilodeau
,
S.
,
Brosseau
,
P.
,
Lacroix
,
M.
, and
Mercadier
,
Y.
, 1999, “
Frost Formation in Rotary Heat and Moisture Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2605
2619
.
15.
Freund
,
S.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
, 2003, “
A Semi-Empirical Method to Estimate Enthalpy Exchanger Performance and a Comparison of Alternative Frost Control Strategies
,”
HVAC&R Res.
1078-9669,
9
, pp.
493
508
.
16.
Shang
,
W.
,
Chen
,
H.
,
Evitts
,
R. W.
, and
Besant
,
R. W.
, 2001, “
Frost Growth in Regenerative Heat Exchangers: Part I: Problem Formulation and Method of Solution and Part II: Simulation and Discussion
,”
Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition
, New York, NY.
17.
ASHRAE
, 1991,
ANSI/ASHRAE Standard 84-1991R, Method of Testing Air-to-Air Heat Exchangers
,
American Society of Heating
,
Refrigerating and Air-Conditioning Engineers, Inc.
, Atlanta, GA.
18.
Shang
,
W.
,
Wawryk
,
M.
, and
Besant
,
R. W.
, 2001, “
Air Crossover in Rotary Wheels Used for Air-to-Air Heat and Moisture Recovery
,”
ASHRAE Trans.
0001-2505,
107
, pp.
72
83
.
19.
ASHRAE
, 2001,
2001 ASHRAE Handbook - Fundamentals
,
American Society of Heating
,
Refrigerating and Air-Conditioning Engineers, Inc.
, Atlanta, GA.
20.
Chen
,
H.
,
Thomas
,
L.
, and
Besant
,
R. W.
, 2003, “
Fan Supplied Heat Exchanger Fin Performance under Frosting Conditions
,”
Int. J. Refrig.
0140-7007,
26
, pp.
142
152
.
21.
Fletcher
, 1970,
The Chemical Physics of Ice
,
Cambridge University Press
, Cambridge.
22.
Shang
,
W.
, and
Besant
,
R. W.
, 2005, “
Effects of Pore Size Variations on Regenerative Wheel Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
121
135
.
23.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Supplement 1 to Advances in Heat Transfer
,
Academic Press
, New York.
24.
Tao
,
Y.-X
,
Besant
,
R. W.
, and
Rezkallah
,
K. S.
, 1993b, “
A Mathematical Model for Predicting the Densification and Growth of Frost on a Flat Plate
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
353
363
.
25.
Chen
,
H.
,
Besant
,
R. W.
, and
Tao
,
Y. X.
, 1999, “
Frost Characteristics and Heat Transfer on a Flat Plate under Freezer Operating Conditions: Part II: Numerical Modeling and Comparison with Data
,”
ASHRAE Trans.
0001-2505,
105
, pp.
252
259
.
26.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
,
McGraw-Hill
, New York.
27.
Ramaswumy
,
M.
,
Georgiadis
,
J. G.
, and
Tenbusch
,
A.
, 1995, “
Microscopic Study of Frost Inception: Effects of Substrate, Supercooling, and Grazing Flow
,”
Proceedings of 1995 ASME International Mechanical Engineering Congress and Exposition
.
28.
Le Gall
,
R.
,
Grillot
,
J. M.
, and
Jallut
,
C.
, 1997, “
Modeling of Frost Growth and Densification
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
3177
3187
.
29.
Mao
,
Y.
,
Besant
,
R. W.
, and
Rezkallah
,
K. S.
, 1992, “
Measurement and Correlations of Frost Properties with Airflow over a Flat Plate
,”
ASHRAE Trans.
0001-2505,
98
, pp.
65
78
.
You do not currently have access to this content.