Nanofluids are a new class of nanotechnology-based heat transfer fluids engineered by dispersing and stably suspending nanoparticles with typical length on the order of 1–50 nm in traditional heat transfer fluids. For the past decade, pioneering scientists and engineers have made phenomenal discoveries that a very small amount (<1vol%) of guest nanoparticles can provide dramatic improvements in the thermal properties of the host fluids. For example, some nanofluids exhibit superior thermal properties such as anomalously high thermal conductivity at low nanoparticle concentrations, strong temperature- and size-dependent thermal conductivity, a nonlinear relationship between thermal conductivity and concentration, and a threefold increase in the critical heat flux at a small particle concentration of the order of 10 ppm. Nanofluids are of great scientific interest because these unprecedented thermal transport phenomena surpass the fundamental limits of conventional macroscopic theories of suspensions. Therefore, numerous mechanisms and models have been proposed to account for these unexpected, intriguing thermal properties of nanofluids. These discoveries also show that nanofluids technology can provide exciting new opportunities to develop nanotechnology-based coolants for a variety of innovative engineering and medical applications. As a result, the study of nanofluids has emerged as a new field of scientific research and innovative applications. Hence, the subject of nanofluids is of great interest worldwide for basic and applied research. This paper highlights recent advances in this new field of research and shows future directions in nanofluids research through which the vision of nanofluids can be turned into reality.

1.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
, FED-231/MD-66, pp.
99
105
.
2.
Padovani
,
S.
,
Sada
,
C.
,
Mazzoldi
,
P.
,
Brunetti
,
B.
,
Borgia
,
I.
,
Sgamellotti
,
A.
,
Giulivi
,
A.
,
D’Acapito
,
F.
, and
Battaglin
,
G.
, 2003, “
Copper in Glazes of Renaissance Luster Pottery: Nanoparticles, Ions, and Local Environment
,”
J. Appl. Phys.
0021-8979,
93
(
12
), pp.
10058
10063
.
3.
Borkar
,
S.
, 1999, “
Design Challenges of Technology Scaling
,”
IEEE MICRO
,
19
(
4
), pp.
23
29
. 0272-1732
4.
Kwak
,
K.
, and
Kim
,
C.
, 2005, “
Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Aust. Rheol. J.
1226-119X,
17
(
2
), pp.
35
40
.
5.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thomson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
6.
Chopkar
,
M.
,
Das
,
P. K.
, and
Manna
,
I.
, 2006, “
Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications
,”
Scr. Mater.
1359-6462,
55
, pp.
549
552
.
7.
Zhu
,
H.
,
Zhang
,
C.
,
Liu
,
S.
, and
Tang
,
Y.
, 2006, “
Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
023123
.
8.
Liu
,
M. S.
,
Lin
,
M. C. C.
,
Tsai
,
C. Y.
, and
Wang
,
C. C.
, 2006, “
Enhancement of Thermal Conductivity With Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3028
3033
.
9.
Phuoc
,
T. X.
,
Soong
,
Y.
, and
Chyu
,
M. K.
, 2007, “
Synthesis of Ag-Deionized Water Nanofluids Using Multi-Beam Laser Ablation in Liquids
,”
Opt. Lasers Eng.
,
45
, pp.
1099
1106
. 0143-8166
10.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
11.
Jana
,
S.
,
Salehi-Khojin
,
A.
, and
Zhong
,
W. -H.
, 2007, “
Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives
,”
Thermochim. Acta
0040-6031,
462
, pp.
45
55
.
12.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
, 2006, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
J. Appl. Phys.
0021-8979,
100
(
4
), p.
044325
.
13.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
, p.
084308
.
14.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
15.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Ponnappan
,
R.
, 2007, “
Thermal Conductivity Improvement in Carbon Nanoparticle Doped PAO Oil: An Experimental Study
,”
J. Appl. Phys.
0021-8979,
101
, p.
064302
.
16.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2005, “
Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
44
, pp.
367
373
.
17.
Hong
,
T. K.
,
Yang
,
H. S.
, and
Choi
,
C. J.
, 2005, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
0021-8979,
97
, p.
064311
.
18.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
19.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2006, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
0021-8979,
99
, p.
084314
.
20.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
21.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
153107
.
22.
Chon
,
C. H.
, and
Kihm
,
K. D.
, 2005, “
Thermal Conductivity Enhancement of Nanofluids by Brownian Motion
,”
ASME J. Heat Transfer
0022-1481,
127
, p.
810
.
23.
Hong
,
K. S.
,
Hong
,
T. K.
, and
Yang
,
H. S.
, 2006, “
Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
031901
.
24.
Kim
,
S. H.
,
Choi
,
S. R.
, and
Kim
,
D.
, 2007, “
Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
298
307
.
25.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
851
862
.
26.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
, 2006, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
133108
.
27.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
, pp.
474
480
.
28.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
, 2007, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2272
2281
. 0017-9310
29.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2008, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
, pp.
560
568
. 1290-0729
30.
Jang
,
S. P.
,
Lee
,
J. H.
,
Hwang
,
K. S.
, and
Choi
,
S. U. S.
, 2007, “
Particle Concentration and Tube Size Dependence of Viscosities of Al2O3-Water Nanofluids Flowing Through Micro- and Minitubes
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
243112
.
31.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
, 2003, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
0001-1541,
49
, pp.
1038
1043
.
32.
Pak
,
B.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particle
,”
Exp. Heat Transfer
0891-6152,
11
, pp.
151
170
.
33.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
240
250
.
34.
Faulkner
,
D. J.
,
Rector
,
D. R.
,
Davidson
,
J. J.
, and
Shekarriz
,
R.
, 2004, “
Enhanced Heat Transfer Through the Use of Nanofluids in Forced Convection
,” ASME Paper No. IMECE2004-62147.
35.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
36.
Williams
,
W. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042412
.
37.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
, 2007, “
Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
1501
1506
.
38.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling of Nano-Fluids on Horizontal Narrow Tubes
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
1237
1247
.
39.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2407
2419
.
40.
Wen
,
D.
, and
Ding
,
Y.
, 2005, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based Alumina Nanofluids
,”
J. Nanopart. Res.
1388-0764,
7
, pp.
265
274
.
41.
Nnanna
,
A. G. A.
, 2007, “
Experimental Model of Temperature-Driven Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
697
704
.
42.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. M.
, 2003, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling of Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
3374
3376
.
43.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
407
411
.
44.
Milanova
,
D.
, and
Kumar
,
R.
, 2005, “
Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
233107
.
45.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Alumina Nanoparticles Enhance the Flow Critical Heat Flux of Water at Low Pressure
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
044501
.
46.
Hansson
,
R.
,
Park
,
H. S.
,
Shiferaw
,
D.
, and
Sehgal
,
B. R.
, 2005, “
Spontaneous Steam Explosions in Subcooled Al2O3 Nanofluids
,”
The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11)
, Avignon, France, Oct. 2–6, Paper No. 464.
47.
Liu
,
Z. H.
,
Xiong
,
J. G.
, and
Bao
,
R.
, 2007, “
Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator With Micro-Grooved Heating Surface
,”
Int. J. Multiphase Flow
,
33
, pp.
1284
1295
. 0301-9322
48.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
1388-0764,
5
, pp.
167
171
.
49.
Xue
,
Q. -Z.
, 2003, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett. A
0375-9601,
307
, pp.
313
317
.
50.
Foygel
,
M.
,
Morris
,
R. D.
,
Anez
,
D.
,
French
,
S.
, and
Sobolev
,
V. L.
, 2005, “
Theoretical and Computational Studies of Carbon Nanotube Composites and Suspensions: Electrical and Thermal Conductivity
,”
Phys. Rev. B
0163-1829,
71
, p.
104201
.
51.
Biercuk
,
B. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
, and
Johnson
,
A. T.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
2767
2772
.
52.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nature Mater.
1476-1122,
2
, pp.
731
734
.
53.
Nan
,
C. -W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
, 2004, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
3549
3551
.
54.
Xuan
,
Y.
,
Li
,
Q.
,
Zhang
,
X.
, and
Fujii
,
M.
, 2006, “
Stochastic Thermal Transport of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
100
, p.
043507
.
55.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
56.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
1388-0764,
6
, pp.
577
588
.
57.
Patel
,
H. E.
,
Sundararajan
,
T.
,
Pradeep
,
T.
,
Dasgupta
,
A.
,
Dasgupta
,
N.
, and
Das
,
S. K.
, 2005, “
A Micro-Convection Model for Thermal Conductivity of Nanofluid
,”
Pramana, J. Phys.
0304-4289,
65
, pp.
863
869
.
58.
Ren
,
Y.
,
Xie
,
H.
, and
Cai
,
A.
, 2005, “
Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles
,”
J. Phys. D: Appl. Phys.
0022-3727,
38
, pp.
3958
3961
.
59.
Evans
,
W.
,
Fish
,
J.
, and
Keblinski
,
P.
, 2006, “
Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
093116
.
60.
Vladkov
,
M.
, and
Barrat
,
J. -L.
, 2006, “
Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid
,”
Nano Lett.
1530-6984,
6
, pp.
1224
1228
.
61.
Sarkar
,
S.
, and
Selvam
,
R. P.
, 2007, “
Molecular Dynamics Simulation of Effective Thermal Conductivity and Study of Enhanced Thermal Transport Mechanism in Nanofluids
,”
J. Appl. Phys.
0021-8979,
102
, p.
074302
.
62.
Eapen
,
J.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Hu
,
L. -W.
, and
Yip
,
S.
, 2007, “
Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
095901
.
63.
Lee
,
D.
,
Kim
,
J. -W.
, and
Kim
,
B. G.
, 2006, “
A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
4323
4328
.
64.
Eapen
,
J.
,
Li
,
J.
, and
Yip
,
S.
, 2007, “
Mechanism of Thermal Transport in Dilute Nanocolloids
,”
Phys. Rev. Lett.
0031-9007,
98
, p.
028302
.
65.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3701
3707
.
66.
Ding
,
Y.
, and
Wen
,
D.
, 2005, “
Particle Migration in a Flow of Nanoparticle Suspensions
,”
Powder Technol.
0032-5910,
149
, pp.
84
92
.
67.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
68.
Narayan
,
G. P.
,
Anoop
,
K. B.
, and
Das
,
S. K.
, 2007, “
Mechanism of Enhancement/Deterioration of Boiling Heat Transfer Using Stable Nanoparticle Suspensions Over Vertical Tubes
,”
J. Appl. Phys.
0021-8979,
102
, p.
074317
.
69.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2006, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
153107
.
70.
Kim
,
H. D.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2007, “
Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
691
706
.
71.
Kim
,
H. D.
, and
Kim
,
M. H.
, 2007, “
Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
014104
.
72.
Tsai
,
C. Y.
,
Chien
,
H. T.
,
Ding
,
P. P.
,
Chan
,
B.
,
Luh
,
T. Y.
, and
Chen
,
P. H.
, 2004, “
Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance
,”
Mater. Lett.
0167-577X,
58
, pp.
1461
1465
.
73.
Tzeng
,
S. -C.
,
Lin
,
C. -W.
, and
Huang
,
K. D.
, 2005, “
Heat Transfer Enhancement of Nanofluids in Rotary Blade Coupling of Four-Wheel-Drive Vehicles
,”
Acta Mech.
0001-5970,
179
, pp.
11
23
.
74.
Buongiorno
,
J.
,
Hu
,
L. W.
,
Kim
,
S. J.
,
Hannink
,
R.
,
Truong
,
B.
, and
Forrest
,
E.
, 2008, “
Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues and Research Gaps
,”
Nucl. Technol.
,
162
, pp.
80
91
. 0029-5450
75.
Buongiorno
,
J.
, 2005,
Proceedings of the American Nuclear Society—International Congress on Advances in Nuclear Power Plants 2005, ICAPP’05 6
, pp.
3581
3585
.
76.
Tran
,
P. X.
, 2007, “
Nanofluids for Use as Ultra-Deep Drilling Fluids
,” Fact Sheet, National Energy Technology Laboratory, Office of Fossil Energy, U.S. Department of Energy, Jan., http://www.netl.doe.gov/publications/factsheets/rd/R&D108.pdf.
You do not currently have access to this content.