Nanofluids have been proposed to improve the performance of microchannel heat sinks. In this paper, we present a systematic characterization of aqueous silica nanoparticle suspensions with concentrations up to 31vol%. We determined the particle morphology by transmission electron microscope imaging and its dispersion status by dynamic light scattering measurements. The thermophysical properties of the fluids, namely, their specific heat, density, thermal conductivity, and dynamic viscosity were experimentally measured. We fabricated microchannel heat sinks with three different channel widths and characterized their thermal performance as a function of volumetric flow rate for silica nanofluids at concentrations by volume of 0%, 5%, 16%, and 31%. The Nusselt number was extracted from the experimental results and compared with the theoretical predictions considering the change of fluids bulk properties. We demonstrated a deviation of less than 10% between the experiments and the predictions. Hence, standard correlations can be used to estimate the convective heat transfer of nanofluids. In addition, we applied a one-dimensional model of the heat sink, validated by the experiments. We predicted the potential of nanofluids to increase the performance of microchannel heat sinks. To this end, we varied the individual thermophysical properties of the coolant and studied their impact on the heat sink performance. We demonstrated that the relative thermal conductivity enhancement must be larger than the relative viscosity increase in order to gain a sizeable performance benefit. Furthermore, we showed that it would be preferable to increase the volumetric heat capacity of the fluid instead of increasing its thermal conductivity.

1.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2010, “
A Novel High Performance, Ultra Thin Heat Sink for Electronics
,”
Int. J. Heat Fluid Flow
0142-727X,
31
(
4
), pp.
586
598
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
Implications of High-Performance Heat Sinking for Electron Devices
,”
IEEE Trans. Electron Devices
0018-9383,
28
(
10
), pp.
1230
1231
.
3.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Fabbri
,
M.
,
Kloter
,
U.
, and
Michel
,
B.
, 2006, “
Direct Liquid Jet Impingement Cooling With Micronsized Nozzle Array and Distributed Return Architecture
,”
The 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
, San Diego, CA.
4.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2009, “
Efficiency of Optimized Bifurcating Tree-Like and Parallel Microchannel Networks in the Cooling of Electronics
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1421
1430
.
5.
Escher
,
W.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2009, “
Experimental Investigation of an Ultra-Thin Manifold Micro-Channel Heat Sink for Liquid-Cooled Chips
,”
ASME Trans. J. Heat Transfer
0022-1481,
132
(
8
), p.
081402
.
6.
Shalkevich
,
N.
,
Escher
,
W.
,
Buergi
,
T.
,
Michel
,
B.
,
Si-Ahmed
,
L.
, and
Poulikakos
,
D.
, 2010, “
A Study on the Thermal Conductivity of Gold Nanoparticle Colloids
,”
Langmuir
0743-7463,
26
(
2
), pp.
663
670
.
7.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z. B.
, and
Shimmin
,
R. G.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
(
8
), p.
084308
.
8.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Sreekumaran Nair
,
A.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
(
14
), pp.
2931
2933
.
9.
Liu
,
M. S.
,
Lin
,
M. C. C.
,
Tsai
,
C. Y.
, and
Wang
,
C. C.
, 2006, “
Enhancement of Thermal Conductivity With Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
17–18
), pp.
3028
3033
.
10.
Hong
,
T. -K.
,
Yang
,
H. -S.
, and
Choi
,
C. J.
, 2005, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
0021-8979,
97
(
6
), p.
064311
.
11.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2006, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
0021-8979,
99
(
8
), p.
084314
.
12.
Lee
,
D.
, 2007, “
Thermophysical Properties of Interfacial Layer in Nanofluids
,”
Langmuir
0743-7463,
23
(
11
), pp.
6011
6018
.
13.
Zhu
,
H. T.
,
Zhang
,
C. Y.
,
Tang
,
Y. M.
, and
Wang
,
J. X.
, 2007, “
Novel Synthesis and Thermal Conductivity of CuO Nanofluid
,”
J. Phys. Chem. C
1932-7447,
111
(
4
), pp.
1646
1650
.
14.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
15.
Xie
,
H. Q.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979,
94
(
8
), pp.
4967
4971
.
16.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
Mckrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Ga
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M. S. H. K.
,
Iorio
,
C. S.
,
Pil Jang
,
S.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Geok Kieng
,
L.
,
Kim
,
C.
,
Kim
,
J.
,
Kim
,
S.
,
Hyun Lee
,
S.
,
Choong Leong
,
K.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.
,
Zhao
,
X.
, and
Zhou
,
S.
, 2009, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
(
9
), p.
094312
.
17.
Zhou
,
S. -Q.
, and
Ni
,
R.
, 2008, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
0003-6951,
92
(
9
), p.
093123
.
18.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
, 2006, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
0003-6951,
89
(
13
), p.
133108
.
19.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Chukwu
,
G. A.
, 2006, “
Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid)
,”
J. Nanosci. Nanotechnol.
1533-4880,
6
(
4
), pp.
1150
1154
.
20.
Wen
,
D. S.
, and
Ding
,
Y. L.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
24
), pp.
5181
5188
.
21.
Zeinali Heris
,
S.
,
Nasr Esfahany
,
M.
, and
Etemad
,
S. Gh.
, 2007, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
0142-727X,
28
(
2
), pp.
203
210
.
22.
Chen
,
H. S.
,
Wei
,
Y.
,
He
,
Y. R.
,
Ding
,
W.
,
Zhang
,
L. L.
,
Tan
,
C. Q.
,
Lapkin
,
A. A.
, and
Bavykin
,
D. V.
, 2007, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)
,”
Proceedings of the UK-China Particle Technology Forum
, Leeds, England, pp.
63
72
.
23.
Rea
,
U.
,
Mckrell
,
T.
,
Hu
,
L. W.
, and
Buongiorno
,
J.
, 2009, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
7–8
), pp.
2042
2048
.
24.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
, 2008, “
Forced Convective Interlayer Cooling in Vertically Integrated Packages
,”
Proceedings of the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, pp.
1114
1125
.
25.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 1998, “
Modeling Friction Factors in Non-Circular Ducts for Developing Laminar Flow
,” AIAA Paper No. 98-2492 Albuquerque, NM.
26.
Incropera
,
F. P.
, 1999,
Liquid Cooling of Electronic Devices by Single-Phase Convection
,
Wiley
,
New York
.
27.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2004, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME Trans. J. Heat Transfer
0022-1481,
126
(
1
), pp.
54
61
.
28.
Provencher
,
S. W.
, 1982, “
Contin—A General-Purpose Constrained Regularization Program for Inverting Noisy Linear Algebraic and Integral-Equations
,”
Comput. Phys. Commun.
0010-4655,
27
(
3
), pp.
229
242
.
You do not currently have access to this content.