The experimental work presented in this paper relates to the local convective heat transfer on the rotor surface in the airgap of a discoidal rotor stator system. The stator used in these experiments is a multiperforated disk in which an air suction due to the rotation of the rotor comes through and enters the airgap. A thermal balance equation was used to identify the local convective heat transfer coefficient, with temperatures as boundary conditions, which have been measured by infrared thermography. The influence of the suctions is discussed for an interdisk dimensionless spacing interval G ranging from 0.01 to 0.16 and for Re between 129,000 and 516,000. Results are compared with precedent studies in which we obtained Nusselt numbers with a closed rotor stator system in which stator is a full disk and a rotor stator system with one hole at the stator center. It is shown that multiperforated stator can or cannot improve the rotor cooling, depending on G and Re.

1.
Von Karman
,
T.
, 1921, “
Uber laminare und turbulente Reibung
,”
J. Math. Mech.
0095-9057,
1
, pp.
244
252
.
2.
Ekman
,
V.
, 1905, “
On the Influence of the Earth’s Rotation on Ocean-Currents
,”
Ark. Mat., Astron. Fys.
0365-4133,
2
(
11
), pp.
1
52
.
3.
Dorfman
,
L.
, 1963,
Hydrodynamic Resistance and Heat Loss From Rotating Solids
,
Oliver and Boyd
,
Edinburgh, Scotland
.
4.
Richardson
,
P.
, and
Saunders
,
O.
, 1963, “
Studies of Flow and Heat Transfer Associated With a Rotating Disk
,”
J. Mech. Eng. Sci
0022-2542,
5
, pp.
336
342
.
5.
Bödewadt
,
U. T.
, 1940, “
Die drehstromung uber festem grunde
,”
Z. Angew. Math. Mech.
0044-2267,
20
, pp.
241
253
.
6.
Batchelor
,
G.
, 1951, “
Note on a Class of Solutions of the Navier-Stokes Equations Representing Steady Rotationally-Symmetric Flow
,”
Q. J. Mech. Appl. Math.
0033-5614,
4
, pp.
29
41
.
7.
Stewartson
,
K.
, 1953, “
On the Flow Between Two Rotating Coaxial Disks
,”
Math. Proc. Cambridge Philos. Soc.
0305-0041,
49
, pp.
333
341
.
8.
Grohne
,
D.
, 1955, “
Uber die laminare stromung in einer kreiszylindrischen dose mit rotierendemdeckel
,”
Nachr. Akad. Wiss. Goett. II, Math.-Phys. Kl.
0065-5295,
12
, pp.
263
282
.
9.
Brady
,
J.
, and
Durlofsky
,
L.
, 1987, “
On Rotating Disk Flow
,”
J. Fluid Mech.
0022-1120,
175
, pp.
363
394
.
10.
Gan
,
X. P.
, and
MacGregor
,
S. A.
, 1995, “
Experimental Study of the Flow in the Cavity Between Rotating Disks
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
379
387
.
11.
Daily
,
J.
, and
Nece
,
R.
, 1960, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Disks
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
217
232
.
12.
Pellé
,
J.
, and
Harmand
,
S.
, 2007, “
Heat Transfer Measurements in an Opened Rotor Stator System Air Gap
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
165
180
.
13.
Owen
,
J.
, and
Rogers
,
M.
, 1989,
Flow and Heat Transfer in Rotating Disk Systems
(
Rotor-Stator Systems
Vol.
1
),
John Wiley and Sons
,
New York
.
14.
Angioletti
,
M.
,
Di Tommaso
,
R.
,
Nino
,
E.
, and
Ruocco
,
G.
, 2003, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Heat Mass Transfer
0947-7411,
46
, pp.
1703
1713
.
15.
Astarita
,
T.
, and
Cardone
,
G.
, 2008, “
Convective Heat Transfer on a Rotating Disk With a Centered Impinging Round Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1562
1572
.
16.
Poncet
,
S.
,
Chauve
,
M.
, and
Schiestel
,
R.
, 2005, “
Batchelor Versus Stewartson Flow Structures in a Rotor-Stator Cavity With Throughflow
,”
Phys. Fluids
1070-6631,
17
(
16
), p.
075110
.
17.
Poncet
,
S.
, and
Schiestel
,
R.
, 2007, “
Numerical Modeling of Heat Transfer and Fluid Flow in Rotor-Stator Cavities With Throughflow
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
1528
1544
.
18.
Boutarfa
,
R.
, 2001, “
Etude expérimentale des échanges convectifs sur un disque en rotation placé face un disque fixe
,” Ph.D. thesis, Université de Valenciennes et du Hainaut-Cambrésis, France.
19.
Singh
,
M.
, and
Rajvanshi
,
S. C.
, 1978, “
Computation of the Flow Between a Rotating Disk and a Stationary Naturally Permeable Disk
,”
Int. J. Eng. Sci.
0020-7225,
16
, pp.
731
741
.
20.
Padmavathi
,
S.
, and
Venkatasiva Murthy
,
N.
, 1985, “
The Flow Between a Rotating Disk and a Stationary Porous Disk of Finite Thickness
,”
Int. J. Eng. Sci.
0020-7225,
23
, pp.
393
400
.
21.
Agarwal
,
R. S.
, and
Dhanapal
,
C.
, 1987, “
Numerical Solutions of Micropolar Fluid Flow Between a Rotating and a Porous Stationary
,”
Int. J. Eng. Sci.
0020-7225,
25
, pp.
1403
1417
.
22.
Pellé
,
J.
, and
Harmand
,
S.
, 2009, “
Heat Transfer Study in a Rotor-Stator System Air-Gap With an Axial Inflow
,”
Appl. Therm. Eng.
1359-4311,
29
, pp.
1532
1543
.
23.
Cardone
,
G.
,
Astarita
,
T.
, and
Carlomagno
,
G.
, 1996, “
Infrared Heat Transfer Measurements on a Rotating Disk
,”
Optical Diagnostics in Engineering
,
1
, pp.
1
7
.
You do not currently have access to this content.