A recently developed Shastry’s formalism for energy transport is used to analyze the temporal and spatial behaviors of the electron energy and heat transport in metals under delta function excitation at the surface. Comparison with Cattaneo’s model is performed. Both models show the transition between nonthermal (ballistic) and thermal (ballistic-diffusive) regimes. Furthermore, because the new model considers the discrete character of the lattice, it highlights some new phenomena, such as damped oscillations, in the energy transport both in time and in space. The energy relaxation of the conduction band electrons in metals is considered to be governed by the electron-phonon scattering, and the scattering time is taken to be averaged over the Fermi surface. Using the new formalism, one can quantify the transfer from nonthermal modes to thermal ones as energy propagates in the material and it is transformed into heat. While the thermal contribution shows a wave-front and an almost exponentially decaying behavior with time, the nonthermal part shows a wave-front and a damped oscillating behavior. Two superimposed oscillations are identified, a fast oscillation that is attributed to the nonthermal nature of energy transport at very short time scales and a slow oscillation that describes the nature of the transition from the nonthermal regime to the thermal regime of energy transport.

1.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
41
73
.
2.
Mahan
,
G. D.
, and
Claro
,
F.
, 1988, “
Nonlocal Theory of Thermal Conductivity
,”
Phys. Rev. B
0556-2805,
38
, pp.
1963
1969
.
3.
Joshi
,
A. A.
, and
Majumdar
,
A.
, 1993, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
0021-8979,
74
, pp.
31
39
.
4.
Alvarez
,
F. X.
, and
Jou
,
D.
, 2007, “
Memory and Nonlocal Effects in Heat Transport: From Diffusive to Ballistic Regimes
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
083109
.
5.
Tzou
,
D. Y.
, 1995, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
8
16
.
6.
Tzou
,
D. Y.
, 1997,
Macro- to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
7.
Chen
,
G.
, 2001, “
Ballistic-Diffusive Heat Conduction Equations
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
2297
2300
.
8.
Chen
,
G.
, 2002, “
Ballistic-Diffusive Equations for Transient Heat Conduction from Nano to Macroscales
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
320
328
.
9.
Brorson
,
S. D.
,
Fujimoto
,
J. G.
, and
Ippen
,
E. P.
, 1987, “
Femtosecond Electronic Heat Transport Dynamics in Thin Gold Films
,”
Phys. Rev. Lett.
0031-9007,
59
, pp.
1962
1965
.
10.
Fann
,
W. S.
,
Storz
,
R.
,
Tom
,
H. W. K.
, and
Bokor
,
J.
, 1992, “
Electron Thermalization in Gold
,”
Phys. Rev. B
0556-2805,
46
, pp.
13592
13595
.
11.
Groeneveld
,
R. H. M.
,
Sprik
,
R.
, and
Lagendijk
,
A.
, 1995, “
Femtosecond Spectroscopy of Electron-Electron and Electron-Phonon Energy Relaxation in Ag and Au
,”
Phys. Rev. B
0556-2805,
51
, pp.
11433
11445
.
12.
Hopkins
,
P. E.
, and
Stewart
,
D. A.
, 2009, “
Contribution of d-Band Electrons to Ballistic Transport and Scattering During Electron-Phonon Nonequilibrium in Nanoscale Au Films Using an ab Initio Density of States
,”
J. Appl. Phys.
0021-8979,
106
, p.
053512
.
13.
Siemens
,
M. E.
,
Li
,
Q.
,
Yang
,
R.
,
Nelson
,
K. A.
,
Anderson
,
E. H.
,
Murnane
,
M. M.
, and
Kapteyn
,
H. C.
, 2010, “
Quasi-Ballistic Thermal Transport From Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams
,”
Nature Mater.
1476-1122,
9
, pp.
26
30
.
14.
Shastry
,
B. S.
, 2009, “
Electrothermal Transport Coefficients at Finite Frequencies
,”
Rep. Prog. Phys.
0034-4885,
72
, p.
016501
.
15.
Ezzahri
,
Y.
, and
Shakouri
,
A.
, 2009, “
Ballistic and Diffusive Transport of Energy and Heat in Metals
,”
Phys. Rev. B
0556-2805,
79
, p.
184303
.
16.
Ezzahri
,
Y.
, and
Shakouri
,
A.
, 2009, “
Transient Energy and Heat Transport in Metals
,”
Proceedings of the Summer Heat Transfer Conference, ASME SHTC ‘09
, San Francisco, CA, Jul. 19–23.
17.
Cattaneo
,
C.
, 1958, “
Sur une Forme de l’Equation de la Chaleur Eliminant le Paradoxe d’une Propagation Instantanée
,”
C. R. Acad. Sci
,
247
, pp.
431
433
.
18.
Rowe
,
D. M.
, 1995,
Handbook of Thermoelectrics
,
CRC
,
Boca Raton, FL
.
19.
Palik
,
E. D.
, 1998,
Handbook of Optical Constants of Solids III
,
Academic
,
San Diego
.
20.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
, 2nd ed.,
Holt, Rinehart and Winston
,
New York
.
21.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
22.
Ziman
,
J. M.
, 1960,
Electron and Phonons
,
Clarendon Press
,
Oxford
.
23.
Kanavin
,
A. P.
,
Smetanin
,
I. V.
,
Isakov
,
V. A.
,
Afanasiev
,
Y. V.
,
Chichkov
,
B. N.
,
Wellegehausen
,
B.
,
Nolte
,
S.
,
Momma
,
C.
, and
Tünnermann
,
A.
, 1998, “
Heat Transport in Metals Irradiated by Ultrashort Laser Pulses
,”
Phys. Rev. B
0556-2805,
57
, pp.
14698
14703
.
24.
Haji-Sheikh
,
A.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
, 2002, “
Certain Anomalies in the Analysis of Hyperbolic Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
307
319
.
25.
Morse
,
P. M.
, and
Feshback
,
H.
, 1953,
Mathematical Methods of Theoretical Physics
,
McGraw-Hill
,
New York
.
26.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
, 2001,
Extended Irreversible Thermodynamics
, 3rd ed.,
Springer
,
New York
.
27.
Barletta
,
A.
, and
Zanchini
,
E.
, 1997, “
Hyperbolic Heat Conduction and Local Equilibrium: A Second Law Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
1007
1016
.
28.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1972,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
,
Dover
,
New York
.
29.
Houston
,
W. V.
, 1929, “
The Temperature Dependence of Electrical Conductivity
,”
Phys. Rev.
0031-899X,
34
, pp.
279
283
.
30.
Waschke
,
C.
,
Roskos
,
H. G.
,
Schwedler
,
R.
,
Leo
,
K.
,
Kurz
,
H.
, and
Köhler
,
K.
, 1993, “
Coherent Submillimeter-Wave Emission From Bloch Oscillations in a Semiconductor Superlattice
,”
Phys. Rev. Lett.
0031-9007,
70
, pp.
3319
3322
.
31.
Dekorsy
,
T.
,
Ott
,
R.
,
Kurz
,
H.
, and
Köhler
,
K.
, 1995, “
Bloch Oscillations at Room Temperature
,”
Phys. Rev. B
0556-2805,
51
, pp.
17275
17278
.
32.
Sun
,
C. K.
,
Vallée
,
F.
,
Acioli
,
L. H.
,
Ippen
,
E. P.
, and
Fujimoto
,
J. G.
, 1994, “
Femtosecond-Tunable Measurement of Electron Thermalization in Gold
,”
Phys. Rev. B
0556-2805,
50
, pp.
15337
15348
.
33.
Zeiger
,
H. J.
,
Vidal
,
J.
,
Cheng
,
T. K.
,
Ippen
,
E. P.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1992, “
Theory for Displacive Excitation of Coherent Phonons
,”
Phys. Rev. B
0556-2805,
45
, pp.
768
778
.
34.
Hase
,
M.
,
Mizoguchi
,
K.
,
Harima
,
H.
,
Nakashima
,
S.
, and
Sakai
,
K.
, 1998, “
Dynamics of Coherent Phonons in Bismuth Generated by Ultrashort Laser Pulses
,”
Phys. Rev. B
0556-2805,
58
, pp.
5448
5452
.
35.
Hase
,
M.
,
Ishioka
,
K.
,
Demsar
,
J.
,
Ushida
,
K.
, and
Kitajima
,
M.
, 2005, “
Ultrafast Dynamics of Coherent Optical Phonons and Nonequilibrium Electrons in Transition Metals
,”
Phys. Rev. B
0556-2805,
71
, p.
184301
.
36.
Goulielmakis
,
E.
,
Schultze
,
M.
,
Hofstetter
,
M.
,
Yakovlev
,
V. S.
,
Gagnon
,
J.
,
Uiberacker
,
M.
,
Aquila
,
A. L.
,
Gullikson
,
E. M.
,
Attwood
,
D. T.
,
Kienberger
,
R.
,
Krausz
,
F.
, and
Kleineberg
,
U.
, 2008, “
Single-Cycle Nonlinear Optics
,”
Science
0036-8075,
320
, pp.
1614
1617
.
37.
Guyer
,
R. A.
, and
Krumhansl
,
J. A.
, 1966, “
Solution of the Linearized Phonon Boltzmann Equation
,”
Phys. Rev.
0031-899X,
148
, pp.
766
778
.
You do not currently have access to this content.