Dynamic wetting behaviors of water droplet on the modified surface were investigated experimentally. Dynamic contact angles were measured as a characterization method to explain the extraordinary pool boiling critical heat flux (CHF) enhancement on the zirconium surface by anodic oxidation modification. The sample surface is rectangular zirconium alloy plates (20 × 25 × 0.7 mm), and 12 μl of deionized water droplets were fallen from 40 mm of height over the surface. Dynamic wetting movement of water on the surface showed different characteristics depending on static contact angle (49.3 deg–0 deg) and surface temperature (120 °C–280 °C). Compared with bare surface, wettable and spreading surface had no-receding contact angle jump and seemed stable evaporating meniscus of liquid droplet in dynamic wetting condition on hot surface. This phenomenon could be explained by the interaction between the evaporation recoil and the surface tension forces. The surface tension force increased by micro/nanostructure of the modified zirconium surface suppresses the vapor recoil force by evaporation which makes the water layer unstable on the heated surface. Thus, such increased surface force could sustain the water layer stable in pool boiling CHF condition so that the extraordinary CHF enhancement could be possible.

References

1.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, 2003, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
, pp.
3374
3376
.
2.
Kutateladze
,
S. S.
, 1950, “
A Hydrodynamic Model of the Critical Heat Transfer in Boiling Liquids With Free Convection
,”
Zh. Tekh. Fiz.
,
20
, pp.
1389
1392
.
3.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” (AECU-4439, Physics and Mathematics).
4.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
47
, pp.
407
411
.
5.
Milanova
,
D.
, and
Kumar
,
R.
, 2005, “
Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids
,”
Appl. Phys. Lett.
,
87
, p.
233107
.
6.
Milanova
,
D.
, and
Kumar
,
R.
, 2008, “
Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment
,”
ASME Trans. J. Heat Transfer
,
130
, p.
042401
.
7.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2407
2419
.
8.
Kim
,
H. D.
,
Kim
,
J. B.
, and
Kim
,
M. H.
, 2006, “
Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
49
, pp.
5070
5074
.
9.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2006, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
,
89
, p.
153107
.
10.
Liu
,
Z.
, and
Liao
,
L.
, 2008, “
Sorption and Agglutination Phenomenon of Nanofluids on a Plane Heating Surface During Pool Boiling
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2593
2601
.
11.
Coursey
,
J. S.
, and
Kim
,
J.
, 2008, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1577
1585
.
12.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
452
463
.
13.
Ahn
,
H. S.
,
Kim
,
H.
,
Jo
,
H. J.
,
Kang
,
S. H.
,
Chang
,
W. P.
, and
Kim
,
M. H.
, 2010, “
Experimental Study of Critical Heat Flux Enhancement During Force Convective Flow Boiling of Nanofluid on a Short Heated Surface
,”
Int. J. Multiphase Flow
,
36
, pp.
375
384
.
14.
Kim
,
S. T.
,
Kim
,
H. D.
,
Kim
,
H.
,
Ahn
,
H. S.
,
Jo
,
H. J.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2009, “
Effects of Nano-Fluid and Surfaces With Nano Structure on the Increase of CHF
,”
Exp. Therm. Fluid Sci.
,
34
, pp.
487
495
.
15.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H. J.
,
Kang
,
S. H.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2010, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
, pp.
3350
3360
.
16.
Kandlikar
,
S. G.
, 2001, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME Trans. J. Heat Transfer
,
123
, pp.
1071
1080
.
17.
Ahn
,
H. S.
,
Jo
,
H. J.
,
Kang
,
S. H.
, and
Kim
,
M. H.
, 2011, “
Effect of Liquid Spreading Due to Nano/Microstrucures on the Cirtical Heat Flux During Pool Boiling
,”
Appl. Phys. Lett.
,
98
, p.
071908
.
18.
Soriaga
,
M. P.
, 1988,
Electrochemical Surface Science
,
American Chemical Society
,
Washington, DC
,
36
,pp.
528
540
.
19.
Ono
,
S.
,
Saito
,
M.
, and
Asoh
,
H.
, 2005, “
Self-Ordering of Anodic Porous Alumina Formed in Organic Acid Electrolytes
,”
Electrochem. Acta
,
51
, pp.
827
833
.
20.
Gong
,
D.
,
Grimes
,
G. A.
, and
Varghese
,
O. K.
, 2001, “
Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation
,”
J. Mater. Res.
,
16
, pp.
3331
3334
.
21.
Ploc
,
R. A.
, and
Miller
,
M. A.
, 1977, “
Transmission and Scanning Electron Microscopy of Oxides Anodically Formed on Zircaloy-2
,”
J. Nucl. Mater.
,
64
, pp.
71
85
.
22.
Lee
,
W. J.
, and
Smyrl
,
W. H.
, 2008, “
Oxide Nanotube Arrays Fabricated by Anodizing Processes for Advanced Material Application
,”
Curr. Appl. Phys.
,
8
, pp.
818
821
.
23.
Salot
,
R.
,
Lefebvre-Joud
,
F.
, and
Baroux
,
B.
, 1996, “
Electrochemical Behavior of Thin Anodic Oxide Films on Zircaloy-4: Role of the Mobile Defects
,”
J. Electrochem. Soc.
,
143
, pp.
3902
3909
.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
25.
Kim
,
H. D.
, and
Kim
,
M. H.
, 2007, “
Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
,
91
,
014104
.
26.
Kandlikar
,
S. G.
, and
Steinke
,
M. E.
, 2002, “
Contact Angles and Interface Behavior During Rapid Evaporation of Liquid on a Heated Surface
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3771
3780
.
27.
Moosman
,
S.
, and
Homsy
,
G. M.
, 1980, “
Evaporating Menisci of Wetting Fluids
,”
J. Colloid Interface Sci.
,
73
, pp.
212
223
.
28.
Sefiane
,
K.
,
Benielli
,
D.
, and
Steinchen
,
A.
, 1998, “
A New Mechanism for Pool Boiling Crisis, Recoil Instability and Contact Angle Influence
,”
Colloids Surf. A
,
142
, pp.
361
373
.
29.
Takata
,
Y.
,
Hidaka
,
S.
,
Cao
,
J. M.
,
Nakamura
,
T.
,
Yamamoto
,
H.
,
Masuda
,
M.
, and
Ito
,
T.
, 2005, “
Effect of Surface Wettability on Boiling and Evaporation
,”
Energy
,
30
, pp.
209
220
.
30.
Wang
,
H.
,
Garimella
,
S. V.
,
Murthy
,
J. Y.
, 2008, “
An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
51
, pp.
6317
6322
.
31.
Tanner
,
L. H.
, 1979, “
The Spreading of Silicone Oil Drops on Horizontal Surfaces
,”
J. Phys. D
,
12
, pp.
1473
1484
.
32.
Kim
,
H.
, and
Kim
,
J.
, 2010, “
Wettability of Dual-Scaled Surfaces Fabricated by the Combination of a Conventional Silicon Wet-Etching and a ZnO Solution Method
,”
J. Micromech. Microeng.
,
20
, p.
045008
.
33.
Theofanous
,
T. G.
, and
Dinh
,
T. N.
, 2006, “
High Heat Flux Boiling and Burnout as Microphysical Phenomena: Mounting Evidence and Opportunities
,”
Multiphase Sci. Technol.
,
18
, pp.
251
276
.
34.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4105
4116
.
35.
Kim
,
H. D.
,
Ahn
,
H. S.
, and
Kim
,
M. H.
, 2010, “
On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
,”
ASME Trans. J. Heat Transfer
,
132
, p.
061501
.
36.
Mukherjee
,
S.
, and
Abraham
,
J.
, 2007, “
Crown Behavior in Drop Impact on Wet Walls
,”
Phys. Fluids
,
19
, p.
052103
.
You do not currently have access to this content.