The phonon thermal conductivity of Gallium nitride (GaN) nanofilms and nanowires under prestress fields are investigated theoretically. In the framework of elasticity theory, the phonon dispersion relations of spatially confined GaN nanostructures are achieved for different phonon modes. The acoustoelastic effects stemmed from the preexisting stresses are taken into account in simulating the phonon properties and thermal conductivity. Our theoretical results show that the prestress fields can alter the phonon properties such as the phonon dispersion relation and phonon group velocity dramatically, leading to the change of thermal conductivity in GaN nanostructures. The phonon thermal conductivity is able to be enhanced or reduced through controlling the directions of prestress fields operated on the GaN nanofilms and nanowires. In addition, the temperature and size-dependence of thermal conductivity of GaN nanostructures will be sensitive to the direction and strength of those prestress fields. This work will be helpful in controlling the phonon thermal conductivity based on the strain/stress engineering in GaN nanostructures-based electronic devices and systems.

References

1.
Balandin
,
A. A.
,
Pokatilov
,
E. P.
, and
Nika
,
D. L.
,
2007
, “
Phonon Engineering in Hetero- and Nanostructures
,”
J. Nanoelectron. Optoelectron.
,
2
, pp.
140
170
.10.1166/jno.2007.201
2.
Tian
,
Z. T.
,
Lee
,
S.
, and
Chen
,
G.
,
2013
, “
Heat Transfer in Thermoelectric Materials and Devices
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061605
.10.1115/1.4023585
3.
Huang
,
Y.
,
Duan
,
X.
,
Cui
,
Y.
, and
Lieber
,
C. M.
,
2002
, “
Gallium Nitride Nanowire Nanodevices
,”
Nano Lett.
,
2
, pp.
101
104
.10.1021/nl015667d
4.
Goldberger
,
J.
,
He
,
R.
,
Zhang
,
Y.
,
Lee
,
S.
,
Yan
,
H.
,
Choi
,
H.
, and
Yang
,
P.
,
2003
, “
Single-Crystal Gallium Nitride Nanotubes
,”
Nature
,
422
, pp.
599
602
.10.1038/nature01551
5.
Gradečak
,
S.
,
Qian
,
F.
,
Li
,
Y.
,
Park
,
H.
, and
Lieber
,
C. M.
,
2005
, “
GaN Nanowire Lasers With Low Lasing Thresholds
,”
Appl. Phys. Lett.
,
87
, p.
173111
.10.1063/1.2115087
6.
Mohammad
,
S. N.
,
Salvador
,
A. A.
, and
Morkoc
,
H.
,
1995
, “
Emerging Gallium Nitride Based Devices
,”
Proc. IEEE
,
83
, pp.
1306
1355
.10.1109/5.469300
7.
Chung
,
K.
,
Lee
,
C. H.
, and
Yi
,
G. C.
,
2010
, “
Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices
,”
Science
,
330
, pp.
655
657
.10.1126/science.1195403
8.
Baliga
,
B. J.
,
2013
, “
Gallium Nitride Devices for Power Electronic Applications
,”
Semicond. Sci. Technol.
,
28
, p.
074011
.10.1088/0268-1242/28/7/074011
9.
Shenai
,
K.
,
Shah
,
K.
, and
Xing
,
H.
,
2010
, “
Performance Evaluation of Silicon and Gallium Nitride Power FETs for DC/DC Power Converter Applications
,”
Proceedings of the IEEE NAECON Conference
, Fairborn, OH, pp.
317
321
.
10.
Babic
,
D. I.
,
2013
, “
Thermal Analysis of AlGaN/GaN HEMTs Using Angular Fourier-Series Expansion
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111001
.10.1115/1.4024594
11.
Kuykendall
,
T.
,
Pauzauskie
,
P. J.
,
Zhang
,
Y.
,
Goldberger
,
J.
,
Sirbuly
,
D.
,
Denlinger
,
J.
, and
Yang
,
P.
,
2004
, “
Crystollographic Alignment of High Density Gallium Nitride Nanowire Arrays
,”
Nat. Mater.
,
3
, pp.
524
528
.10.1038/nmat1177
12.
Liu
,
B.
,
Bando
,
Y.
,
Tang
,
C.
,
Xu
,
F.
, and
Golberg
,
D.
,
2005
, “
Quasi-Aligned Single-Crystalline GaN Nanowire Arrays
,”
Appl. Phys. Lett.
,
87
, p.
073106
.10.1063/1.2011794
13.
Sichel
,
E. K.
, and
Pankove
,
J. I.
,
1977
, “
Thermal Conductivity of GaN, 25–360 K
,”
J. Phys. Chem. Solids
,
38
, p.
330
.10.1016/0022-3697(77)90112-3
14.
Guthy
,
C.
,
Nam
,
C. Y.
, and
Fischer
,
J. E.
,
2008
, “
Unusually Low Thermal Conductivity of Gallium Nitride Nanowires
,”
J. Appl. Phys.
,
103
, p.
064319
.10.1063/1.2894907
15.
Slack
,
G. A.
,
1973
, “
Nonmetallic Crystals With High Thermal Conductivity
,”
J. Phys. Chem. Solids
,
34
, pp.
321
335
.10.1016/0022-3697(73)90092-9
16.
Zou
,
J.
,
2010
, “
Lattice Thermal Conductivity of Freestanding Gallium Nitride Nanowires
,”
J. Appl. Phys.
,
108
, p.
034324
.10.1063/1.3463358
17.
Zhou
,
G.
, and
Li
,
L. L.
,
2012
, “
Phonon Thermal Conductivity of GaN Nanotubes
,”
J. Appl. Phys.
,
112
, p.
014317
.10.1063/1.4736421
18.
AlShaikhi
,
A.
,
Barman
,
S.
, and
Srivastava
,
G. P.
,
2010
, “
Theory of the Lattice Thermal Conductivity in Bulk and Films of GaN
,”
Phys. Rev. B
,
81
, p.
195320
.10.1103/PhysRevB.81.195320
19.
Jung
,
K.
,
Cho
,
M.
, and
Zhou
,
M.
,
2012
, “
Thermal and Mechanical Response of [0001]-Oriented GaN Nanowires During Tensile Loading and Unloading
,”
J. Appl. Phys.
,
112
, p.
083522
.10.1063/1.4759282
20.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Reinecke
,
T. L.
,
2012
, “
Thermal Conductivity and Large Isotope Effect in GaN From First Principles
,”
Phys. Rev. Lett.
,
109
, p.
095901
.10.1103/PhysRevLett.109.095901
21.
Seo
,
H. W.
,
Bae
,
S. Y.
,
Park
,
J.
,
Yang
,
H.
, and
Park
,
K. S.
,
2002
, “
Strained Gallium Nitride Nanowires
,”
J. Chem. Phys.
,
116
, pp.
9492
9499
.10.1063/1.1475748
22.
Wedler
,
G.
,
Walz
,
J.
,
Hesjedal
,
T.
,
Chilla
,
E.
, and
Koch
,
R.
,
1998
, “
Stress and Relief of Misfit Strain of Ge/Si (001)
,”
Phys. Rev. Lett.
,
80
, pp.
2382
2385
.10.1103/PhysRevLett.80.2382
23.
Chang
,
C. L.
,
Jaob
,
J. Y.
,
Hoa
,
W. Y.
, and
Wang
,
D. Y.
,
2007
, “
Influence of Bi-Layer Period Thickness on the Residual Stress, Mechanical, and Tribological Properties of Nanolayered TiAlN/CrN Multi-Layer Coatings
,”
Vacuum
,
81
, pp.
604
609
.10.1016/j.vacuum.2006.08.003
24.
Venkatachalam
,
A.
,
James
,
W. T.
, and
Graham
,
S.
,
2011
, “
Electro-Thermo-Mechanical Modeling of GaN-Based HFETs and MOSHFETs
,”
Semicond. Sci. Technol.
,
26
, p.
085027
.10.1088/0268-1242/26/8/085027
25.
Choi
,
S.
,
Heller
,
E.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
The Impact of Mechanical Stress on the Degradation of AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
114
, p.
164501
.10.1063/1.4826524
26.
Silvestri
,
M.
,
Uren
,
M. J.
,
Killat
,
N.
,
Marcon
,
D.
, and
Kuball
,
M.
,
2013
, “
Localization of Off-Stress-Induced Damage in AlGaN/GaN High Electron Mobility Transistors by Means of Low Frequency 1/f Noise Measurements
,”
Appl. Phys. Lett.
,
103
, p.
043506
.10.1063/1.4816424
27.
Abramson
,
A. R.
,
Tien
,
C. L.
, and
Majumdar
,
A.
,
2002
, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
963
970
.10.1115/1.1495516
28.
Picu
,
R. C.
,
Borca-Tasciuc
,
T.
, and
Pavel
,
M. C.
,
2003
, “
Strain and Size Effects on Heat Transport in Nanostructures
,”
J. Appl. Phys.
,
93
, pp.
3535
3539
.10.1063/1.1555256
29.
Bhowmick
,
S.
, and
Shenoy
,
V. B.
,
2006
, “
Effect of Strain on the Thermal Conductivity of Solids
,”
J. Chem. Phys.
,
125
, p.
164513
.10.1063/1.2361287
30.
Xu
,
Y.
, and
Li
,
G.
,
2009
, “
Strain Effect Analysis on Phonon Thermal Conductivity of Two-Dimensional Nanocomposites
,”
J. Appl. Phys.
,
106
, p.
114302
.10.1063/1.3259383
31.
Li
,
X. B.
,
Maute
,
K.
,
Dunn
,
M. L.
, and
Yang
,
R. G.
,
2010
, “
Strain Effects on the Thermal Conductivity of Nanostructures
,”
Phys. Rev. B
,
81
, p.
245318
.10.1103/PhysRevB.81.245318
32.
Paul
,
A.
, and
Klimeck
,
G.
,
2011
, “
Strain Effects on the Phonon Thermal Properties of Ultra-Scaled Si Nanowires
,”
Appl. Phys. Lett.
,
99
, p.
083115
.10.1063/1.3630228
33.
Jung
,
K.
,
Cho
,
M.
, and
Zhou
,
M.
,
2011
, “
Strain Dependence of Thermal Conductivity of [0001]-Oriented GaN Nanowires
,”
Appl. Phys. Lett.
,
98
, p.
041909
.10.1063/1.3549691
34.
Loh
,
G. C.
,
Teo
,
E. H. T.
, and
Tay
,
B. K.
,
2012
, “
Phononic and Structural Response of Strained Wurtzite-Gallium Nitride Nanowires
,”
J. Appl. Phys.
,
111
, p.
103506
.10.1063/1.4716476
35.
Alam
,
M. T.
,
Manoharan
,
M. P.
,
Haque
,
M. A.
,
Muratore
,
C.
, and
Voevodin
,
A.
,
2012
, “
Influence of Strain on Thermal Conductivity of Silicon Nitride Thin Films
,”
J. Micromech. Microeng.
,
22
, p.
045001
.10.1088/0960-1317/22/4/045001
36.
Bannov
,
N.
,
Aristov
,
V.
, and
Mitin
,
V.
,
1995
, “
Electron Relaxation Times Due to the Deformation-Potential Interaction of Electrons With Confined Acoustic Phonons in a Free-Standing Quantum Well
,”
Phys. Rev. B
,
51
, pp.
9930
9942
.10.1103/PhysRevB.51.9930
37.
Balandin
,
A.
, and
Wang
,
K. L.
,
1998
, “
Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well
,”
Phys. Rev. B
,
58
, pp.
1544
1549
.10.1103/PhysRevB.58.1544
38.
Zou
,
J.
,
Lange
,
X.
, and
Richardson
,
C.
,
2006
, “
Lattice Thermal Conductivity of Nanoscale AlN/GaN/AlN Heterostructures: Effects of Partial Phonon Spatial Confinement
,”
J. Appl. Phys.
,
100
, p.
104309
.10.1063/1.2365380
39.
Morse
,
R. W.
,
1949
, “
The Dispersion of Compressional Waves in Isotropic Rods of Rectangular Cross Section
,” Ph.D. thesis, Brown University, Providence, RI.
40.
Martin
,
P.
,
Aksamija
,
Z.
,
Pop
,
E.
, and
Ravaioli
,
U.
,
2009
, “
Impact of Phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires
,”
Phys. Rev. Lett.
,
102
, p.
125503
.10.1103/PhysRevLett.102.125503
41.
Łepkowski
,
S. P.
,
Majewski
,
J. A.
, and
Jurczak
,
G.
,
2005
, “
Nonlinear Elasticity in III-N Compounds: Ab Initio Calculations
,”
Phys. Rev. B
,
72
, p.
245201
.10.1103/PhysRevB.72.245201
42.
Łepkowski
,
S. P.
, and
Gorczyca
,
I.
,
2011
, “
Ab Initio Study of Elastic Constants in InxGa1-xN and InxAl1-xN Wurtzite Alloys
,”
Phys. Rev. B
,
83
, p.
203201
.10.1103/PhysRevB.83.203201
You do not currently have access to this content.