The natural convective boundary layer flow of a nanofluid over an isothermal horizontal plate is studied analytically. The model used for the nanofluid accounts for the effects of Brownian motion and thermophoresis. The analysis shows that the velocity, temperature, and nanoparticle volume fraction profiles in the respective boundary layers depend not only on the Prandtl number (Pr) and Lewis number (Le) but also on three additional dimensionless parameters: the Brownian motion parameter Nb, the buoyancy ratio parameter Nr and the thermophoresis parameter Nt. The velocity, temperature, and nanoparticle volume fraction profiles for the nanofluid are found to have a weak dependence on the values of Nb, Nr, and Nt. The effect of the above-mentioned parameters on the local skin-friction coefficient and Nusselt number has been studied extensively. It has been observed that as Nr increases, the local skin-friction coefficient decreases whereas local Nusselt number remains almost constant. As Nb or Nt increases, the local skin-friction coefficient increases whereas the local Nusselt number decreases.

References

1.
Florio
,
A.
, and
Harnoy
,
A.
,
2007
, “
Combination Technique for Improving Natural Convection Cooling in Electronics
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
76
92
.10.1016/j.ijthermalsci.2006.03.007
2.
Lim
,
K. O.
,
Lee
,
K. S.
, and
Song
,
T. H.
,
1999
, “
Primary and Secondary Instabilities in a Glass Melting Surface
,”
Numer. Heat Transfer, Part A
,
36
(
3
), pp.
309
325
.10.1080/104077899274787
3.
Patil
,
P. M.
, and
Kulkarni
,
P. S.
,
2008
, “
Effects of Chemical Reaction on Free Convective Flow of a Polar Fluid Through a Porous Medium in the Presence of Internal Heat Generation
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
1043
1054
.10.1016/j.ijthermalsci.2007.07.013
4.
Saidur
,
R.
,
Kazi
,
S. N.
,
Hossain
,
M. S.
,
Rahman
,
M. M.
, and
Mohammed
,
H. A.
,
2011
, “
A Review on the Performance of Nanoparticles Suspended With Refrigerants and Lubricating Oils in Refrigeration Systems
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
310
323
.10.1016/j.rser.2010.08.018
5.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.10.1016/j.ijheatmasstransfer.2011.04.048
6.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments and Applications of Non-Neutonian Flows, D. A. Siginer and H. P., Wang, eds.,
American Society of Mechanical Engineers
, New York, FED- Vol. 231/MD-Vol. 66, pp. 99–105.
7.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
8.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.10.1016/S0142-727X(99)00067-3
9.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
, 1st ed.,
Wiley
,
New York
.
10.
Guha
,
A.
,
1997
, “
A Unified Eulerian Theory of Turbulent Deposition to Smooth and Rough Surfaces
,”
J. Aerosol Sci.
,
28
(
8
), pp.
1517
1537
.10.1016/S0021-8502(97)00028-1
11.
Guha
,
A.
,
2008
, “
A Generalized Mass Transfer Law Unifying Various Particle Transport Mechanisms in Dilute Dispersions
,”
Heat Mass Transfer
,
44
(11), pp.
1289
1303
.10.1007/s00231-008-0369-5
12.
Guha
,
A.
,
2008
, “
Transport and Deposition of Particles in Turbulent and Laminar Flow
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
311
341
.10.1146/annurev.fluid.40.111406.102220
13.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
14.
Pak
,
B. C.
, and
Cho
,
Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
15.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.10.1115/1.1532008
16.
Maxwell-Garnett
,
J. C.
,
1904
, “
Colours in Metal Glasses and in Metallic Films
,”
Philos. Trans. R. Soc. London, Ser. A
,
203
, pp.
385
420
.10.1098/rsta.1904.0024
17.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2665
2672
.10.1016/S0017-9310(03)00016-4
18.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy Driven Heat Transfer Enhancement Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.10.1016/S0017-9310(03)00156-X
19.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nanofluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
.10.1007/s00231-002-0382-z
20.
Wen
,
D.
, and
Ding
,
Y.
,
2006
, “
Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids)
,”
IEEE Trans. Nanotechnol.
,
5
(
3
), pp.
220
227
.10.1109/TNANO.2006.874045
21.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
243
247
.10.1016/j.ijthermalsci.2009.07.015
22.
Khan
,
W. A.
, and
Aziz
,
A.
,
2011
, “
Natural Convection Flow of a Nanofluid Over a Vertical Plate With Uniform Surface Heat Flux
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1207
1214
.10.1016/j.ijthermalsci.2011.02.015
23.
Aziz
,
A.
, and
Khan
,
W. A.
,
2012
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Convectively Heated Vertical Plate
,”
Int. J. Therm. Sci.
,
52
(
1
), pp.
83
90
.10.1016/j.ijthermalsci.2011.10.001
24.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2011
, “
Double-Diffusive Natural Convective Boundary Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
712
717
.10.1016/j.ijthermalsci.2011.01.003
25.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
The Cheng-Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5792
5795
.10.1016/j.ijheatmasstransfer.2009.07.024
26.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2011
, “
The Cheng-Minkowycz Problem for the Double-Diffusive Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
374
378
.10.1016/j.ijheatmasstransfer.2010.09.034
27.
Schlichting
,
H.
, and
Gersten
,
H. K.
,
2004
,
Boundary Layer Theory
, 8th ed.,
Springer
,
New Delhi, India
.
28.
Guha
,
A.
,
1998
, “
A Unified Theory for the Interpretation of Total Pressure and Temperature in Two-Phase Flows at Subsonic and Supersonic Speeds
,”
Proc. R. Soc. London
,
454
(
1970
), pp.
671
695
.10.1098/rspa.1998.0180
29.
Guha
,
A.
,
1998
, “
A Simple Analytical Theory for Interpreting Measured Total Pressure in Multiphase Flows
,”
ASME J. Fluids Eng.
,
120
(
2
), pp.
385
389
.10.1115/1.2820659
30.
Guha
,
A.
,
1998
, “
Computation, Analysis and Theory of Two-Phase Flows
,”
Aeronaut. J.
,
102
(
1012
), pp.
71
82
.
31.
Kleinstreuer
,
C.
, and
Feng
,
Y.
,
2012
, “
Thermal Nanofluid Property Model With Application to Nanofluid Flow in a Parallel-Disk System—Part I: A New Thermal Conductivity Model for Nanofluid Flow
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051002
.10.1115/1.4005632
32.
Samanta
,
S.
, and
Guha
,
A.
,
2012
, “
A Similarity Theory for Natural Convection From a Horizontal Plate for Prescribed Heat Flux or Wall Temperature
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3857
3868
.10.1016/j.ijheatmasstransfer.2012.02.031
33.
Bradie
,
B.
,
2007
,
A Friendly Introduction to Numerical Analysis
, 1st ed.,
Pearson Education
,
New Delhi, India
.
34.
Rotem
,
Z.
, and
Claassen
,
L.
,
1969
, “
Natural Convection Above Unconfined Horizontal Surfaces
,”
J. Fluid Mech.
,
39
(
1
), pp.
173
192
.10.1017/S0022112069002102
You do not currently have access to this content.