An experimental investigation was performed for convective condensation of R410A inside one smooth tube (3.78 mm, inner diameter) and six microfin tubes (4.54, 4.6 and 8.98 mm, fin root diameter) of different geometries for mass fluxes ranging from 99 to 603 kg m−2s−1. The experimental data were analyzed with updated flow pattern maps and evaluated with existing correlations. The heat transfer coefficient in the microfin tubes decreases at first and then increases or flattens out gradually as mass flux decreases. This obvious nonmonotonic heat transfer coefficient-mass flux relation may be explained by the complex interactions between the microfins and the fluid, mainly by surface tension effects. The heat transfer enhancement mechanism in microfin tubes is mainly due to the surface area increase at large mass fluxes, while liquid drainage by surface tension and interfacial turbulence enhance heat transfer greatly at low mass fluxes.

References

1.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis Group
,
New York
.
2.
Thome
,
J. R.
,
2004
,
Engineering Data Book III
,
Wolverine Tube, Inc.
, Ardmore, TN.
3.
Chamra
,
L. M.
,
Mago
,
P. J.
,
Tan
,
M. O.
, and
Kung
,
C. C.
,
2005
, “
Modeling of Condensation Heat Transfer of Pure Refrigerants in Micro-Fin Tubes
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1293
1302
.10.1016/j.ijheatmasstransfer.2004.10.005
4.
Chamra
,
L. M.
,
Tan
,
M. O.
, and
Kung
,
C. C.
,
2004
, “
Evaluation of Existing Condensation Heat Transfer Models in Horizontal Micro-Fin Tubes
,”
Exp. Therm. Fluid Sci.
,
28
(
6
),
p. 617628
.10.1016/j.expthermflusci.2003.10.006
5.
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2009
, “
Intensive Literature Review of Condensation Inside Smooth and Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
52
(
15
), pp.
3409
3426
.10.1016/j.ijheatmasstransfer.2009.01.011
6.
Liebenberg
,
L.
, and
Meyer
,
J. P.
,
2008
, “
A Review of Flow Pattern-Based Predictive Correlations During Refrigerant Condensation in Horizontally Smooth and Enhanced Tubes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
3
19
.10.1080/01457630701677049
7.
Nozu
,
S.
, and
Honda
,
H.
,
2000
, “
Condensation of Refrigerants in Horizontal, Spirally Grooved Micro-Fin Tubes: Numerical Analysis of Heat Transfer in Annular Flow Regime
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
80
91
.10.1115/1.521439
8.
Jung
,
D.
,
Cho
,
Y.
, and
Park
,
K.
,
2004
, “
Flow Condensation Heat Transfer Coefficients of R22, R134a, R407C, and R410A Inside Plain and Microfin Tubes
,”
Int. J. Refrig.
,
27
(
1
), pp.
25
32
.10.1016/S0140-7007(03)00122-1
9.
Olivier
,
J. A.
,
Liebenberg
,
L.
,
Thome
,
J. R.
, and
Meyer
,
J. P.
,
2007
, “
Heat Transfer, Pressure Drop, and Flow Pattern Recognition During Condensation Inside Smooth, Helical Micro-Fin, and Herringbone Tubes
,”
Int. J. Refrig.
,
30
(
4
), pp.
609
623
.10.1016/j.ijrefrig.2006.11.003
10.
Sapali
,
S. N.
, and
Patil
,
P. A.
,
2010
, “
Heat Transfer During Condensation of HFC-134a and R-404A Inside of a Horizontal Smooth and Micro-Fin Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1133
1141
.10.1016/j.expthermflusci.2010.03.013
11.
Mohseni
,
S. G.
, and
Akhavan-Behabadi
,
M. A.
,
2011
, “
Visual Study of Flow Patterns During Condensation Inside a Microfin Tube With Different Tube Inclinations
,”
Int. Commun. Heat Mass Transfer
,
38
(
8
), pp.
1156
1161
.10.1016/j.icheatmasstransfer.2011.04.032
12.
Son
,
C. H.
, and
Oh
,
H. K.
,
2012
, “
Condensation Heat Transfer Characteristics of CO2 in a Horizontal Smooth- and Microfin-Tube at High Saturation Temperatures
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
51
62
.10.1016/j.applthermaleng.2011.12.017
13.
Cavallini
,
A.
,
Del Col
,
D.
,
Mancin
,
S.
, and
Rossetto
,
L.
,
2009
, “
Condensation of Pure and Near-Azeotropic Refrigerants in Microfin Tubes: A New Computational Procedure
,”
Int. J. Refrig.
,
32
(
1
), pp.
162
174
.10.1016/j.ijrefrig.2008.08.004
14.
Huang
,
X. C.
,
Ding
,
G. L.
,
Hu
,
H. T.
,
Zhu
,
Y.
,
Gao
,
Y. F.
, and
Deng
,
B.
,
2010
, “
Condensation Heat Transfer Characteristics of R410A-Oil Mixture in 5 mm and 4 mm Outside Diameter Horizontal Microfin Tubes
,”
Exp. Therm. Fluid Sci.
,
34
(
7
), pp.
845
856
.10.1016/j.expthermflusci.2010.01.013
15.
Kim
,
Y. J.
,
Jang
,
J.
,
Hrnjak
,
P. S.
, and
Kim
,
M. S.
,
2009
, “
Condensation Heat Transfer of Carbon Dioxide Inside Horizontal Smooth and Microfin Tubes at Low Temperatures
,”
ASME J. Heat Transfer
,
131
(
2
),
p. 021501
.10.1115/1.2993139
16.
Han
,
D.
, and
Lee
,
K. J.
,
2005
, “
Experimental Study on Condensation Heat Transfer Enhancement and Pressure Drop Penalty Factors in Four Microfin Tubes
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3804
3816
.10.1016/j.ijheatmasstransfer.2005.02.041
17.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
18.
Ravigururajan
,
T. S.
, and
Bergles
,
A. E.
,
1985
, “
General Correlations for Pressure Drop and Heat Transfer for Single-Phase Turbulent Flow in Internally Ribbed Tubes
,”
Augmentation of Heat Transfer in Energy Systems, ASME HTD
, Vol.
52
, pp.
9
20
.
19.
Li
,
G. Q.
,
Wu
,
Z.
,
Li
,
W.
,
Wang
,
Z. K.
,
Wang
,
X.
,
Li
,
H. X.
, and
Yao
,
S. C.
,
2012
, “
Experimental Investigation of Condensation in Microfin Tubes of Different Geometries
,”
Exp. Therm. Fluid Sci.
,
37
(
1
), pp.
19
28
.10.1016/j.expthermflusci.2011.09.008
20.
Sundén
,
B.
,
2012
,
Introduction to Heat Transfer
,
WIT Press, Southampton
,
UK
.
21.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.10.1016/S0065-2717(08)70153-9
22.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.10.1016/0017-9310(70)90114-6
23.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2007
, “
NIST Reference Fluid Thermodynamic and Transport Properties
,” REFPROP 8.0.
24.
Wu
,
Z.
,
Wu
,
Y.
,
Sundén
,
B.
, and
Li
,
W.
,
2013
, “
Convective Vaporization in Micro-Fin Tubes of Different Geometries
,”
Exp. Therm. Fluid Sci.
,
44
(
1
), pp.
398
408
.10.1016/j.expthermflusci.2012.07.012
25.
Liebenberg
,
L.
, and
Meyer
,
J. P.
,
2006
, “
The Characterization of Flow Regimes With Power Spectral Density Distributions of Pressure Fluctuations During Condensation in Smooth and Micro-Fin Tubes
,”
Exp. Therm. Fluid Sci.
,
31
(
2
), pp.
127
140
.10.1016/j.expthermflusci.2006.03.023
26.
El Hajal
,
J.
,
Thome
,
J. R.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes, Part 1: Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3349
3363
.10.1016/S0017-9310(03)00139-X
27.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
1
), pp.
31
38
.10.1080/01457630600793970
28.
Doretti
,
L.
,
Fantini
,
F.
, and
Zilio
,
C.
,
2005
, “
Flow Patterns During Condensation of Three Refrigerants: Microfin vs. Smooth Tube
,”
Proceedings IIR International Conference Thermophysical Properties and Transfer Processes of Refrigerants
, Vicenza, Padova, Italy.
29.
Gronnerud, R., 1979, “Investigation of Liquid Hold-Up, Flow-Resistance and Heat Transfer in Circulation Type Evaporators, Part IV: Two-Phase Flow Resistance in Boiling Refrigerants,” Annexe 1972-1, Bull. de I' Inst. du Froid.
30.
Choi
,
J. Y.
,
Kedzierski
,
M. A.
, and
Domanski
,
P. A.
,
2001
, “
Generalized Pressure Drop Correlation for Evaporation and Condensation in Smooth and Micro-Fin Tubes
,”
Proceedings of IIF-IIR Commission B1
,
Paderborn
, Germany, Vol.
B4
, pp.
9
16
.
31.
Haraguchi
,
H.
,
Koyama
,
S.
,
Esaki
,
J.
, and
Fujii
,
T.
,
1993
, “
Condensation Heat Transfer of Refrigerants HCFC134a, HCFC123, and HCFC22 in a Horizontal Smooth Tube and a Horizontal Micro-Fin Tube
,”
Proceedings of 30th National Symposium
, Yokohama, Japan, pp.
343
345
.
32.
Churchill
,
S. W.
,
1977
, “
Friction Factor Equation Spans all Fluid Flow Regimes
,”
Chem. Eng.
,
84
(
1
), pp.
91
92
.
33.
Eckels
,
S. J.
, and
Tesene
,
B. A.
,
1999
, “
A Comparison of R22, R134a, R410a, and R407C Condensation Performance in Smooth and Enhanced Tubes, Part 1: Heat Transfer
,”
ASHRAE Trans.
,
105
, pp.
428
441
.
34.
Yang
,
C. Y.
, and
Webb
,
R. L.
,
1997
, “
A Predictive Model for Condensation in Small Hydraulic Diameter Tubes Having Axial Micro-Fins
,”
ASME J. Heat Transfer
,
119
(
4
), pp.
776
782
.10.1115/1.2824182
35.
Kedzierski
,
M. A.
, and
Goncalves
,
J. M.
,
1999
, “
Horizontal Convective Condensation of Alternative Refrigerants Within a Micro-Fin Tube
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
161
178
.
36.
Yu
,
J.
, and
Koyama
,
S.
,
1998
, “
Condensation Heat Transfer of Pure Refrigerants in Microfin Tubes
,”
Proceedings of International Refrigeration Conference at Purdue
, West Lafayette, IN, pp.
325
330
.
37.
Cavallini
,
A.
,
Del Col
,
D.
,
Mancin
,
S.
, and
Rossetto
,
L.
,
2006
, “
Thermal Performance of R410A Condensing in a Microfin Tube
,”
Proceedings of International Refrigeration and Air Conditioning Conference at Purdue
University, West Lafayette, IN.
38.
Kim
,
M. H.
, and
Shin
,
J. S.
,
2005
, “
Condensation Heat Transfer of R22 and R410A in Horizontal Smooth and Microfin Tubes
,”
Int. J. Refrig.
,
28
(
6
), pp.
949
957
.10.1016/j.ijrefrig.2005.01.017
You do not currently have access to this content.