There is a critical need for improved coolants for military aircraft applications. The objective of this research is to evaluate nanofluids as potential replacement for the coolant currently used by the Air Force. Alumina/DI water nanofluids were evaluated. It was observed that at the same volumetric flow there was no significant improvement in convective heat transfer. Problems associated with the nanofluids were observed: increase of pressure drop with concentration, particle settling, and especially evidence of vaporization promoted by the nanoparticles. Results raised doubts about the applicability of using nanofluids as alternative coolants for avionic applications.

References

1.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
,
2005
, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
(
6
), pp.
36
44
.10.1016/S1369-7021(05)70936-6
2.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
,
2008
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
29
(
5
), pp.
432
460
.10.1080/01457630701850851
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
4.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
George
,
B.
, and
Pradeep
,
T.
,
2003
, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2931
2933
.10.1063/1.1602578
5.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
567
574
.10.1115/1.1571080
6.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
,
2002
, “
Thermal Conductivity Enhancement of Suspensions containing Nanosized Alumina Particles
,”
J. Appl. Phys.
,
91
(
7
), pp.
4568
4572
.10.1063/1.1454184
7.
Narvaez
,
J. A.
,
2010
, “
Thermal Conductivity of Poly-Alpha-Olefin (PAO)-Based Nanofluids
,” M.S. thesis, University of Dayton, Dayton, OH. https://etd.ohiolink.edu/ap:10:0::NO:10:P10_ETD_SUBID:53623#abstract-files
8.
Veydt
,
A. R.
,
2010
, “
System Level Thermal Hydraulic Performance of Water-Based and PAO Based Alumina Nanofluids
,” M.S. thesis, University of Dayton, Dayton, OH. https://etd.ohiolink.edu/ap:0:0:APPLICATION_PROCESS=DOWNLOAD_ETD_SUB_DOC_ACCNUM:::F1501_ID:dayton1293473550, inline
9.
Lee
,
J. H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
C. J.
,
2008
, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids containing Low Volume Concentrations of Al2O3 nanoparticles
,”
Int. J. Heat Mass Transfer
,
51
(
11
), pp.
2651
2656
.10.1016/j.ijheatmasstransfer.2007.10.026
10.
Zhou
,
S. Q.
,
Ni
,
R.
, and
Funfschilling
,
D.
,
2010
, “
Effects of Shear Rate and Temperature on Viscosity of Alumina Polyalphaolefins Nanofluids
,”
J. Appl. Phys.
,
107
(
5
), pp.
054317
054317
.10.1063/1.3309478
11.
Yang.
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
,
2005
, “
Heat Transfer Properties of Nanoparticles-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
(
6
), pp.
1107
1116
.10.1016/j.ijheatmasstransfer.2004.09.038
12.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Thermal Eng.
,
27
(
8
), pp.
1501
1506
.10.1016/j.applthermaleng.2006.09.028
13.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat and Mass Transfer
,
47
(
24
), pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
14.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L.-W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
, pp.
1
6
.10.1115/1.2818775
15.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
151
155
.10.1115/1.1532008
16.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
1
), pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
17.
Jung
,
J.-Y.
,
Oh
,
H. S.
, and
Kwak
,
H. Y.
,
2009
, “
Forced Convective Heat Transfer of Nanofluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
1
), pp.
466
472
.10.1016/j.ijheatmasstransfer.2008.03.033
18.
Liu
,
D.
, and
Yu
,
L.
,
2011
, “
Single-Phase Thermal Transport of Nanofluids in a Minichannel
,”
ASME J. Heat Transfer
,
133
(
3
), pp.
031009 1-11
.10.1115/1.4002462
19.
Ho
,
C.-J.
,
Wei
,
L. C.
, and
Li
,
Z. W.
,
2010
, “
An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
30
(
2
), pp.
96
103
.10.1016/j.applthermaleng.2009.07.003
20.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e119
e123
.10.1016/j.cap.2008.12.047
21.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3
), pp.
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
22.
Godson
,
L.
,
Raja
,
B.
,
Mohan Lal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids–An Overview
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
629
641
.10.1016/j.rser.2009.10.004
23.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
24.
Zeinali Heris
,
S.
,
Esfahany
,
M. N.
, and
Etemad
,
S. Gh.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.10.1016/j.ijheatfluidflow.2006.05.001
25.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13
), pp.
3187
3196
.10.1016/j.ijheatmasstransfer.2009.02.006
26.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2007
, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
797
817
.10.1016/j.rser.2005.06.005
27.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
613
630
.10.1590/S0104-66322008000400001
28.
Wen
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.10.1016/j.partic.2009.01.007
29.
Ayub
,
Z. H.
,
2003
, “
Plate Heat Exchanger Literature Survey and New Heat Transfer and Pressure Drop Correlations for Refrigerant Evaporators
,”
Heat Transfer Eng.
,
24
(
5
), pp.
3
16
.10.1080/01457630304056
30.
Vaie
,
C. A. A.
,
1975
, “
The Performance of Plate Heat Exchanger
,” Ph.D. thesis, University of Bradford, Bradford, UK.
31.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
”,
Mech. Eng.
,
75
(
1
), pp.
3
8
.
32.
Farber
,
E. A.
, and
Scorah
,
R. L.
,
1948
,
Heat Transfer to Water Boiling Under Pressure
,
University of Missouri
,
Columbia, MO
.
You do not currently have access to this content.