There is a critical need for improved coolants for military aircraft applications. The objective of this research is to evaluate nanofluids as potential replacement for the coolant currently used by the Air Force. Alumina/DI water nanofluids were evaluated. It was observed that at the same volumetric flow there was no significant improvement in convective heat transfer. Problems associated with the nanofluids were observed: increase of pressure drop with concentration, particle settling, and especially evidence of vaporization promoted by the nanoparticles. Results raised doubts about the applicability of using nanofluids as alternative coolants for avionic applications.
Issue Section:
Forced Convection
References
1.
Keblinski
, P.
, Eastman
, J. A.
, and Cahill
, D. G.
, 2005
, “Nanofluids for Thermal Transport
,” Mater. Today
, 8
(6
), pp. 36
–44
.10.1016/S1369-7021(05)70936-62.
Yu
, W.
, France
, D. M.
, Routbort
, J. L.
, and Choi
, S. U. S.
, 2008
, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,” Heat Transfer Eng.
29
(5
), pp. 432
–460
.10.1080/014576307018508513.
Eastman
, J. A.
, Choi
, S. U. S.
, Li
, S.
, Yu
, W.
, and Thompson
, L. J.
, 2001
, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,” Appl. Phys. Lett.
, 78
(6
), pp. 718
–720
.10.1063/1.13412184.
Patel
, H. E.
, Das
, S. K.
, Sundararajan
, T.
, Nair
, A. S.
, George
, B.
, and Pradeep
, T.
, 2003
, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,” Appl. Phys. Lett.
, 83
(14
), pp. 2931
–2933
.10.1063/1.16025785.
Das
, S. K.
, Putra
, N.
, Thiesen
, P.
, and Roetzel
, W.
, 2003
, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,” ASME J. Heat Transfer
, 125
, pp. 567
–574
.10.1115/1.15710806.
Xie
, H.
, Wang
, J.
, Xi
, T.
, Liu
, Y.
, Ai
, F.
, and Wu
, Q.
, 2002
, “Thermal Conductivity Enhancement of Suspensions containing Nanosized Alumina Particles
,” J. Appl. Phys.
, 91
(7
), pp. 4568
–4572
.10.1063/1.14541847.
Narvaez
, J. A.
, 2010
, “Thermal Conductivity of Poly-Alpha-Olefin (PAO)-Based Nanofluids
,” M.S. thesis, University of Dayton, Dayton, OH. https://etd.ohiolink.edu/ap:10:0::NO:10:P10_ETD_SUBID:53623#abstract-files8.
Veydt
, A. R.
, 2010
, “System Level Thermal Hydraulic Performance of Water-Based and PAO Based Alumina Nanofluids
,” M.S. thesis, University of Dayton, Dayton, OH. https://etd.ohiolink.edu/ap:0:0:APPLICATION_PROCESS=DOWNLOAD_ETD_SUB_DOC_ACCNUM:::F1501_ID:dayton1293473550, inline9.
Lee
, J. H.
, Hwang
, K. S.
, Jang
, S. P.
, Lee
, B. H.
, Kim
, J. H.
, Choi
, S. U. S.
, and Choi
, C. J.
, 2008
, “Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids containing Low Volume Concentrations of Al2O3 nanoparticles
,” Int. J. Heat Mass Transfer
, 51
(11
), pp. 2651
–2656
.10.1016/j.ijheatmasstransfer.2007.10.02610.
Zhou
, S. Q.
, Ni
, R.
, and Funfschilling
, D.
, 2010
, “Effects of Shear Rate and Temperature on Viscosity of Alumina Polyalphaolefins Nanofluids
,” J. Appl. Phys.
, 107
(5
), pp. 054317
–054317
.10.1063/1.330947811.
Yang.
Y.
, Zhang
, Z. G.
, Grulke
, E. A.
, Anderson
, W. B.
, and Wu
, G.
, 2005
, “Heat Transfer Properties of Nanoparticles-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,” Int. J. Heat Mass Transfer
, 48
(6
), pp. 1107
–1116
.10.1016/j.ijheatmasstransfer.2004.09.03812.
Nguyen
, C. T.
, Roy
, G.
, Gauthier
, C.
, and Galanis
, N.
, 2007
, “Heat Transfer Enhancement using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System
,” Appl. Thermal Eng.
, 27
(8
), pp. 1501
–1506
.10.1016/j.applthermaleng.2006.09.02813.
Wen
, D.
, and Ding
, Y.
, 2004
, “Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,” Int. J. Heat and Mass Transfer
, 47
(24
), pp. 5181
–5188
.10.1016/j.ijheatmasstransfer.2004.07.01214.
Williams
, W.
, Buongiorno
, J.
, and Hu
, L.-W.
, 2008
, “Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (nanofluids) in Horizontal Tubes
,” ASME J. Heat Transfer
, 130
, pp. 1
–6
.10.1115/1.281877515.
Xuan
, Y.
, and Li
, Q.
, 2003
, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,” ASME J. Heat Transfer
, 125
, pp. 151
–155
.10.1115/1.153200816.
Ding
, Y.
, Alias
, H.
, Wen
, D.
, and Williams
, R. A.
, 2006
, “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,” Int. J. Heat Mass Transfer
, 49
(1
), pp. 240
–250
.10.1016/j.ijheatmasstransfer.2005.07.00917.
Jung
, J.-Y.
, Oh
, H. S.
, and Kwak
, H. Y.
, 2009
, “Forced Convective Heat Transfer of Nanofluids in Microchannels
,” Int. J. Heat Mass Transfer
, 52
(1
), pp. 466
–472
.10.1016/j.ijheatmasstransfer.2008.03.03318.
Liu
, D.
, and Yu
, L.
, 2011
, “Single-Phase Thermal Transport of Nanofluids in a Minichannel
,” ASME J. Heat Transfer
, 133
(3
), pp. 031009 1-11
.10.1115/1.400246219.
Ho
, C.-J.
, Wei
, L. C.
, and Li
, Z. W.
, 2010
, “An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink With Al2O3/Water Nanofluid
,” Appl. Therm. Eng.
, 30
(2
), pp. 96
–103
.10.1016/j.applthermaleng.2009.07.00320.
Kim
, D.
, Kwon
, Y.
, Cho
, Y.
, Li
, C.
, Cheong
, S.
, Hwang
, Y.
, Lee
, J.
, Hong
, D.
, and Moon
, S.
, 2009
, “Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,” Curr. Appl. Phys.
, 9
(2
), pp. e119
–e123
.10.1016/j.cap.2008.12.04721.
Lee
, J.
, and Mudawar
, I.
, 2007
, “Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,” Int. J. Heat Mass Transfer
, 50
(3
), pp. 452
–463
.10.1016/j.ijheatmasstransfer.2006.08.00122.
Godson
, L.
, Raja
, B.
, Mohan Lal
, D.
, and Wongwises
, S.
, 2010
, “Enhancement of Heat Transfer Using Nanofluids–An Overview
,” Renewable Sustainable Energy Rev.
, 14
(2
), pp. 629
–641
.10.1016/j.rser.2009.10.00423.
Pak
, B. C.
, and Cho
, Y. I.
, 1998
, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,” Exp. Heat Transfer
, 11
(2
), pp. 151
–170
.10.1080/0891615980894655924.
Zeinali Heris
, S.
, Esfahany
, M. N.
, and Etemad
, S. Gh.
, 2007
, “Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,” Int. J. Heat Fluid Flow
, 28
(2
), pp. 203
–210
.10.1016/j.ijheatfluidflow.2006.05.00125.
Kakaç
, S.
, and Pramuanjaroenkij
, A.
, 2009
, “Review of Convective Heat Transfer Enhancement With Nanofluids
,” Int. J. Heat Mass Transfer
, 52
(13
), pp. 3187
–3196
.10.1016/j.ijheatmasstransfer.2009.02.00626.
Daungthongsuk
, W.
, and Wongwises
, S.
, 2007
, “A Critical Review of Convective Heat Transfer of Nanofluids
,” Renewable Sustainable Energy Rev.
, 11
(5
), pp. 797
–817
.10.1016/j.rser.2005.06.00527.
Wang
, X.-Q.
, and Mujumdar
, A. S.
, 2008
, “A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,” Braz. J. Chem. Eng.
, 25
(4
), pp. 613
–630
.10.1590/S0104-6632200800040000128.
Wen
D.
, Lin
, G.
, Vafaei
, S.
, and Zhang
, K.
, 2009
, “Review of Nanofluids for Heat Transfer Applications
,” Particuology
, 7
(2
), pp. 141
–150
.10.1016/j.partic.2009.01.00729.
Ayub
, Z. H.
, 2003
, “Plate Heat Exchanger Literature Survey and New Heat Transfer and Pressure Drop Correlations for Refrigerant Evaporators
,” Heat Transfer Eng.
, 24
(5
), pp. 3
–16
.10.1080/0145763030405630.
Vaie
, C. A. A.
, 1975
, “The Performance of Plate Heat Exchanger
,” Ph.D. thesis, University of Bradford, Bradford, UK.31.
Kline
, S. J.
, and McClintock
, F. A.
, 1953
, “Describing Uncertainties in Single-Sample Experiments
”, Mech. Eng.
, 75
(1
), pp. 3
–8
.32.
Farber
, E. A.
, and Scorah
, R. L.
, 1948
, Heat Transfer to Water Boiling Under Pressure
, University of Missouri
, Columbia, MO
.Copyright © 2014 by ASME
You do not currently have access to this content.