The effects of hydrodynamic and thermal slip on heat transfer in a thermally developing, steady, laminar Couette flow are investigated. Fluid temperature at the inlet to a parallel plate channel is prescribed, as various combinations of isothermal and adiabatic boundary conditions are along its surfaces. Analytical expressions incorporating arbitrary slip are developed for temperature profiles, and developing and fully developed for Nusselt numbers. The results are relevant to liquid and gas flows in the presence of apparent and molecular slip, respectively.
Issue Section:
Forced Convection
References
1.
Quéré
, D.
, 2005
, “Non-Sticking Drops
,” Rep. Prog. Phys.
, 68
, pp. 2495
–2532
.10.1088/0034-4885/68/11/R012.
Wang
, E. N.
, Bucaro
, M. A.
, Taylor
, J. A.
, Kolodner
, P.
, Aizenberg
, J.
, and Krupenkin
, T.
, 2009
, “Droplet Mixing Using Electrically Tunable Superhydrophobic Nanostructured Surfaces
,” Microfluid. Nanofluid.
, 7
(1
), pp. 137
–140
.10.1007/s10404-008-0364-73.
Lam
, L. S.
, Hodes
, M.
, and Enright
, R.
, 2013
, “Galinstan-Based Microgap Cooling Enhancement Using Structured Surfaces
,” Proceedings of the ASME 2013 Summer Heat Transfer Conference
.4.
Lifton
, V.
, Taylor
, J.
, Vyas
, B.
, Kolodner
, P.
, Cirelli
, R.
, Basavanhally
, N.
, Papazian
, A.
, Frahm
, R.
, Simon
, S.
, and Krupenkin
, T.
, 2008
, “Superhydrophobic Membranes With Electrically Controllable Permeability and Their Application to Smart Microbatteries
,” Appl. Phys. Lett.
, 93
(4
), p. 043112
.10.1063/1.29656155.
Cassie
, A. B. D.
, and Baxter
, S.
, 1944
, “Wettability of Porous Surfaces
,” Trans. Faraday Soc.
, 40
, pp. 546
–551
.10.1039/tf94440005466.
Vogelpohl
, G.
, 1951
, “Die Temperaturverteilung in Schmierschichten zwishen parallen warmendurchlassigen Wanden
,” Z. Angew. Math. Mech.
, 31
, pp. 349
–356
.10.1002/zamm.195103111057.
Hudson
, J.
, and Bankoff
, S.
, 1965
, “Heat Transfer to a Steady Couette Flow With Pressure Gradient
,” Chem. Eng. Sci.
, 20
(5
), pp. 415
–423
.10.1016/0009-2509(65)80054-98.
Bruin
, S.
, 1972
, “Temperature Distributions in Couette Flow With and Without Additional Pressure
,” Int. J. Heat Mass Transfer
, 15
, pp. 341
–349
.10.1016/0017-9310(72)90079-89.
Davis
, E. J.
, 1973
, “Exact Solutions for a Class of Heat and Mass transfer problems
,” Can. J. Chem. Eng.
, 51
, pp. 562
–572
.10.1002/cjce.545051050610.
El-Ariny
, A.
, and Aziz
, A.
, 1976
, “A Numerical Solution of Entrance Region Heat Transfer in Plane Couette Flow
,” ASME J. Heat Transfer
, 98
, pp. 427
–431
.10.1115/1.345057111.
Sesták
, J.
, and Rieger
, F.
, 1969
, “Laminar Heat Transfer to a Steady Couette Flow Between Parallel Plates
,” Int. J. Heat Mass Transfer
, 12
, pp. 71
–80
.10.1016/0017-9310(69)90079-912.
Schamberg
, R.
, 1947
, “The Fundamental Differential Equations and the Boundary Conditions for High Speed Slip-Flow, and Their Application to Several Specific Problems
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.13.
Marques
, W.
, Jr., Kremer
, G.
, and Sharipov
, F.
, 2000
, “Couette Flow With Slip and Jump Boundary Conditions
,” Continuum Mech. Thermodyn.
, 12
(6
), pp. 379
–386
.10.1007/s00161005014314.
Fang
, Y.
, and Liou
, W. W.
, 2002
, “Computations of the Flow and Heat Transfer in Microdevices Using DSMC With Implicit Boundary Conditions
,” ASME J. Heat Transfer
, 124
(2
), pp. 338
–345
.10.1115/1.144793315.
Sharipov
, F.
, and Strapasson
, J. L.
, 2013
, “Benchmark Problems for Mixtures of Rarefied Gases. I. Couette Flow
,” Phys. Fluids
, 25
(2
), p. 027101
.10.1063/1.479160416.
Milicev
, S. S.
, and Stevanovic
, N. D.
, 2013
, “A Non-Isothermal Couette Slip Gas Flow
,” Sci. Chin. Phys., Mech. Astron.
, 56
(9
), pp. 1782
–1797
.10.1007/s11433-013-5120-717.
Navier
, C.
, 1823
, “Mémoire sur les du mouvement des fluids
,” Mémoires de l'Académie Royale des Sciences de l'Institut de France
, 6
, pp. 389
–440
.18.
Maxwell
, J. C.
, 1965
, Scientific Papers
, Dover Publications
, New York
.19.
Kennard
, E. H.
, 1938
, Kinetic Theory of Gases
, 1st ed., McGraw-Hill
, New York
.20.
Sparrow
, E.
, and Lin
, S.
, 1962
, “Laminar Heat Transfer in Tubes Under Slip Flow Conditions
,” ASME J. Heat Transfer
, pp. 362
–369
.21.
Barron
, R. F.
, Wang
, X.
, Ameel
, T. A.
, and Warrington
, R. O.
, 1997
, “The Graetz Problem Extended to Slip-Flow
,” Int. J. Heat Mass Transfer
, 40
(8
), pp. 1817
–1823
.10.1016/S0017-9310(96)00256-622.
Jiji
, L. M.
, 2009
, Heat Convection
, 2nd ed., Springer-Verlag
, Berlin.23.
Colin
, S.
, 2012
, “Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
,” ASME J. Heat Transfer
, 134
(2
), p. 020908
.10.1115/1.400506324.
Cheng
, Y.
, Teo
, C.
, and Khoo
, B.
, 2009
, “Microchannel Flows With Superhydrophobic Surfaces: Effects of Reynolds Number and Pattern Width to Channel Height Ratio
,” Phys. Fluids
, 21
, p. 122004
.10.1063/1.328113025.
Rothstein
, J. P.
, 2010
, “Slip on Superhydrophobic Surfaces
,” Annu. Rev. Fluid Mech.
, 42
(1
), pp. 89
–109
.10.1146/annurev-fluid-121108-14555826.
Philip
, J.
, 1972
, “Flows Satisfying Mixed No-Slip and No-Shear Conditions
,” J. Appl. Math. Phys.
, 23
, pp. 353
–372
.10.1007/BF0159547727.
Philip
, J.
, 1972
, “Integral Properties of Flows Satisfying Mixed No-Slip and No-Shear Conditions
,” J. Appl. Math. Phys.
, 23
, pp. 960
–968
.10.1007/BF0159622328.
Lauga
, E.
, and Stone
, H.
, 2003
, “Effective Slip in Pressure-Driven Stokes Flow
,” J. Fluid Mech.
, 489
, pp. 55
–77
.10.1017/S002211200300469529.
Ou
, J.
, Perot
, B.
, and Rothstein
, J. P.
, 2004
, “Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,” Phys. Fluids
, 16
(12
), pp. 4635
–4643
.10.1063/1.181201130.
Ou
, J.
, and Rothstein
, J.
, 2005
, “Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,” Phys. Fluids
, 17
, p. 103606
.10.1063/1.210986731.
Priezjev
, N. V.
, Darhuber
, A. A.
, and Troian
, S. M.
, 2005
, “Slip Behavior in Liquid Films on Surfaces of Patterned Wettability
,” Phys. Rev. E
, 71
, p. 041608
.10.1103/PhysRevE.71.04160832.
Truesdell
, R.
, Mammoli
, A.
, Vorobieff
, P.
, van Swol
, F.
, and Brinker
, C.
, 2006
, “Drag Reduction on a Patterned Superhydrophobic Surface
,” Phys. Rev. Lett.
, 97
(4
), pp. 1
–4
.10.1103/PhysRevLett.97.04450433.
Lee
, C.
, Choi
, C.-H.
, and Kim
, C.-J.
, 2008
, “Structured Surfaces for a Giant Liquid Slip
,” Phys. Rev. Lett.
, 101
(6
), pp. 1
–4
.34.
Ybert
, C.
, Barentin
, C.
, Cottin-Bizonne
, C.
, Joseph
, P.
, and Bocquet
, L.
, 2007
, “Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,” Phys. Fluids
, 19
(12
), p. 123601
.10.1063/1.281573035.
Salamon
, T.
, Lee
, W.
, Hodes
, M.
, Kolodner
, P.
, Enright
, R.
, and Salinger
, A.
, 2005
, “Numerical Simulation of Fluid Flow in Microchannels With Superhydrophobic Walls
,” IMECE Conference Proceedings
, ASME, pp. 819
–829
, Paper No. 42215.36.
Maynes
, D.
, Jeffs
, K.
, Woolford
, B.
, and Webb
, B. W.
, 2007
, “Laminar Flow in a Microchannel With Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction
,” Phys. Fluids
, 19
(9
), p. 093603
.10.1063/1.277288037.
Davies
, J.
, Maynes
, D.
, Webb
, B. W.
, and Woolford
, B.
, 2006
, “Laminar Flow in a Microchannel With Superhydrophobic Walls Exhibiting Transverse Ribs
,” Phys. Fluids
, 18
(8
), p. 087110
.10.1063/1.233645338.
Teo
, C. J.
, and Khoo
, B. C.
, 2010
, “Flow Past Superhydrophobic Surfaces Containing Longitudinal Grooves: Effects of Interface Curvature
,” Microfluidics Nanofluidics
, 9
(2–3
), pp. 499
–511
.10.1007/s10404-010-0566-739.
Steinberger
, A.
, Cottin-Bizonne
, C.
, Kleimann
, P.
, and Charlaix
, E.
, 2007
, “High Friction on a Bubble Mattress
,” Nature Mater.
, 6
(9
), pp. 665
–668
.10.1038/nmat196240.
Enright
, R.
, Hodes
, M.
, Salamon
, T.
, and Muzychka
, Y.
, 2014
, “Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels
,” ASME J. Heat Transfer
, 136
, p. 012402
.10.1115/1.402483741.
Enright
, R.
, Hodes
, M.
, Salamon
, T.
, Krupenkin
, T.
, Kolodner
, P.
, Dalton
, T.
, and Eason
, C.
, 2006
, “Friction Factors and Nusselt Numbers in Microchannels With Superhydrophobic Walls
,” Proceedings of the Fourth International Conference on Nanochannels, Microchannels and Minichannels
, Limerick Ireland, ASME, New York, pp. 599
–609
, Paper No. ICNMM2006-96134.42.
Williams
, A. D.
, Vorobieff
, P.
, and Mammoli
, A.
, 2012
, “Effect of Slip Flow on Heat Transfer: Numerical Analysis
,” 50th AIAA Aerospace Sciences Meeting
, p. 7726
.43.
Maynes
, D.
, Webb
, B. W.
, and Davies
, J.
, 2008
, “Thermal Transport in a Microchannel Exhibiting Ultrahydrophobic Microribs Maintained at Constant Temperature
,” ASME J. Heat Transfer
, 130
(2
), p. 022402
.10.1115/1.278971544.
Maynes
, D.
, Webb
, B.
, Crockett
, J.
, and Solovjov
, V.
, 2013
, “Analysis of Laminar Slip-Flow Thermal Transport in Microchannels With Transverse Rib and Cavity Structured Superhydrophobic Walls at Constant Heat Flux
,” ASME J. Heat Transfer
, 135
(2
), p.021701
.10.1115/1.400742945.
Maynes
, D.
, and Crockett
, J.
, 2014
, “Apparent Temperature Jump and Thermal Transport in Channels With Streamwise Rib and Cavity Featured Superhydrophobic Walls at Constant Heat Flux
,” ASME J. Heat Transfer
, 136
, p. 011701
10.1115/1.4025045.46.
Inman
, R. M.
, 1964
, “Laminar Slip Flow Heat Transfer in a Parallel-Plate Channel or a round Tube With Uniform Wall Heating
,” NASA Technical Note D-2393.47.
Teo
, C. J.
, and Khoo
, B. C.
, 2009
, “Analysis of Stokes Flow in microchannels With Superhydrophobic Surfaces Containing a Periodic Array of Micro-Grooves
,” Microfluid. Nanofluid.
, 7
, pp. 352
–382
.10.1007/s10404-008-0387-048.
Weigand
, B.
, 2004
, Analytical Methods for Heat Transfer and Fluid Flow Problems
, Springer
, New York
.49.
Haberman
, R.
, 2004
, Applied Partial Differential Equations With Fourier Series and Boundary Value Problems
, 4th ed., Prentice-Hall
, Englewood Cliffs, NJ.50.
Greenberg
, M.
, 1998
, Advanced Engineering Mathematics
, 2nd ed., Prentice-Hall
, Englewood Cliffs, NJ
.Copyright © 2014 by ASME
You do not currently have access to this content.